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Abstract

The present paper presents a dynamic mechanism design model under uniform truncated in-

tervals of time -called market windows- and endogenous report of departure times. The paper

extends the framework of previous works to explicitly introduce the trade-off faced by buyers

when outside trading opportunities are available in parallel markets. The main results show

that the incentive compatibility conditions satisfy the standard extension of the results found

by Myerson to the dynamic framework; and that sellers follow an optimal stopping rule which

takes into account the possibility sellers have to collect fines if buyers walk away from the in-

stitutionalized market before the claimed departure time. Moreover, it is shown that given

the structure of the windows, seller never terminates the market unilaterraly at inter windows

periods, and instead makes an allocation decision only within market windows.



Chapter 1

Introduction

A recurrent and important feature of settings in which collective decisions are made is that

individuals’ preferences are not publicly observable, and therefore that decision-makers should

rely upon the revelation of such preferences by the same agents. How the information can be

elicited, and how the revelation of such information impacts the final payoffs induced by that

action, is known as the mechanism design problem. In few words, mechanism design theory tries

to disentangle one of the biggest challenges in economics: how to arrange economic interactions

so that, when everybody behaves selfishly, the result is something “acceptable” to all. The

notion of mechanism refers then to the institutions and the rules of the “game” that governs

economic activities, whose span can range from the regulation structure of a particular market,

to a policy for designating votes in a political election.

Defined in that way, mechanism design is at the heart of economics discipline, and since the

pioneering work of Hurwitz (1960), Myerson (1981) and Maskin (1977 published 1999), many

developments in the theory have permitted its application to a myriad of problems in auction

and contract theory, assignation resources, social choice, political economy, public finance and

monetary economics.

After the success of the theory to deal with problems of private information in static, non-

collaborative environments, theorists posed themselves the question over how to extend its results

to dynamic frameworks. Albeit some results can be easily transferred from the static framework,

others are not straightforward but have new challenges embedded, especially regarding the way

information is revealed over time, and with respect to the dimension of agents’ type space (with

many inter-temporal considerations included). In particular, the latter aspect makes incentive

compatibility more difficult to analyze because there are new directions at which agents can
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deviate.

The intrinsic complication of these new models, far for being a theoretical artifact, finds empirical

justification in many real-life situations. Indeed, the advent of technology has permitted that

many mechanisms could be operated online rather than offline. As an example, online auctions

are now a common way to trade, since it permits a seller to meet many possible buyers (with very

distinct valuations over the object) in a very short interval of time. As usual, the objective of

the seller is to maximize the expected revenue, which depends on the arrival process of bidders,

and their stochastic valuations over the object at hand. However, auctions are not the only

application of dynamic mechanisms. Other interesting applications include the operation of

tenders in public projects, the allocation of computer resources (CPU, bandwidth) to a stream

of tasks, the operation of the international market of human organs, and the running of soccer

players’ transfer market every summer in Europe. Many of these applications share roughly the

same theoretical framework. Namely, an allocation of a single-unit object should be made for a

stream of offers that arrive online, which in turn depends on the realizations of several stochastic

variables. Nevertheless, in some cases more than in others, the temporal considerations play

an important role in the determination of the strategies. Thus, consider for example a buyer

trying to get an airline ticket online. The seller might ignore the precise time the agent arrives

to the mechanism to see the price posted, the buyer’s maximum willingness to pay, and or the

maximum date travelers are willing to wait. In the same line, suppose you have a company that

needs to close a deal with a party in order to sign a contract with a third party (e.g. suppose

a builder that has to buy insurance in order to meet the requirements to gain a public tender).

In such situation, the company is constrained by a deadline that affects its bidding behavior in

the first market. Similarly, consider a soccer team bidding for a player in the summer market,

but which has to start its pre-season at a specific date, which sets a deadline up to which the

team is willing to wait for the player.

In all these examples deadline constraints are exogenous to seller’s decision, but might be the case

that agents themselves want to report a deadline endogenously if there is an outside opportunity

that affects the latest time they are willing to sustain an offer. In the same example of the soccer

team, consider a team looking for a specific position player in the European market, but with

scouts looking for in alternative -less developed- markets. The team could decide not to sustain

its offer very long for the player “auctioned” in the summer market, if it expects to find a

suitable deal in those less known “parallel” markets. Moreover, imagine that the club has to

sign a pre-agreement contract (and pay a fee) to enter the bid for the player, which the club lost
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if decides to walk away it in case of winning. Such contract would act as a hidden cost, which

could be higher as nearer the date of disruption is from the close of the market window in that

period.

Precisely, the fact that in some markets the time at which the item can be allocated is truncated

in uniform intervals, introduce new theoretical challenges over the optimal way the planner shall

behave, since delay decisions carry higher costs. In some environments, the problem for the

seller is when to stop the market to maximize revenue, given all these dynamic elements in the

strategic behavior of agents.

The present paper aims to explore the design of a mechanism that takes into account explicitly

the presence of outside options in parallel markets, which make buyers strategic to report their

departure time. Furthermore, the model considers a truncated market in a series of windows,

to analyze how this structure impacts the seller’s maximization problem through an optimal

stopping rule. The work is organized as follows. Chapter 2 reviews the relevant literature on

dynamic mechanisms with special emphasis on implementation and incentive compatibility mat-

ters. Chapter 3 presents a model for the design of a mechanism under truncated market windows

and optimal report of departure times, accompanied by the main results and findings. Finally,

chapter 4 presents some possible extensions of the baseline model, and chapter 5 concludes.
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Chapter 2

Static Mechanism Design

The origins of modern mechanism design theory goes back to 1930s, when Oscar Lange and Abba

Lerner were confronted with Friedrich von Hayek and Ludwig von Mises in the realm of the so-

called Planning Controversy. One on side, Lange and Lerner argued that if public policies were

executed “rightly,” then central planning could replicate the performance of the free market, and

sometimes surpasses markets in terms of efficiency. On the other side, von Hayek and von Misses

argued that market “success” was not attainable by any other centralized mechanism (Maskin,

2008). At the center of this fascinating discussion were many scholars, and among them Leonid

Hurwicz, who first noticed that the lack of rigorousity in the discussion was a real hindrance

to try to reach robust conclusions about what approach was better. So, he entered the picture

with his two pioneering (1960, 1972) works that laid the theoretical foundations of the field.

Specifically, Hurwicz defined without ambiguity the key-stone concepts of “decentralization,”

“goodness,” and “policies,” at the time he incorporated the necessary elements of game theory

and mathematical programming to characterize optimal solutions.

According to Maskin (2008), the work conducted by Hurwicz and his colleagues has produced a

broad consensus among economists that von Hayek and von Mises where, in fact, correct where,

(i) there are large number of buyers and sellers, so that no single agent has significant market

power; and (ii) there are no significant externalities, that is an agent’s consumption, production

and information does not affect other’s production and consumption. Nonetheless, Lange and

Lerner were right if either assumption is violated.

Since this momentum, literature has bourgeoned following in general two different branches.

On one hand, we have endeavors devoted to use structure settings to study particular envi-

ronments and questions such as: how to allocate public goods, how to design auctions, how
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to conduct contests, how to design political elections, and how to structure contracts. On the

other hand, there is a research line concerned primarily in proving results under fairly general

conditions. Specifically, researchers here work in relaxing as much as possible the conditions

about preferences, technologies and resources, in order to make main results more robust.

The second branch is exclusive of micro theorists, while the applied one spans many fields in

economics such as contract theory, auction designs, international policy and political elections.

Much of the relevant issues when analyzing different environments, come from the implemen-

tation side of theory. Namely, given a social goal, the task is to find a mechanism (or a set of

institutions and rules) whose predicted outcomes (i.e. the set of equilibrium outcomes obtained)

coincide with the desirable outcomes, according to the predetermined goal. Nonetheless, the

nature of an “outcome” certainly depends on the problem at hand. Thus, for a state (county)

seeking to elect a governor (mayor), an outcome is simply the choice of a candidate for that slot.

Likewise, for a seller trying to assign an object through an auction, the outcome corresponds

to an allocation specification of the object across potential buyers, along with the payments

those buyers have to transfer to the seller. Another environment in which mechanism design

appears naturally is in the provision of public goods. Here, an outcome comprises the quantities

provided of such goods (public education, highways, recreational parks, among others), together

with the arrangements by which they are financed.

In the same line of reasoning, the criteria of “optimality” or even “desirability” depends on

the environment as well. For instance, in evaluating public goods the standard rule is the

maximization of the net social surplus. Meanwhile, for electing governors, the property that

a candidate would defeat every other competitor in a direct confrontation (i.e a Condorcet

winner) is normally considered a dictum. In the auction scheme there are two criteria by which

an outcome is typically analyzed: (i) whether the object is given to the agent who value it

most (i.e. if the allocation is efficient); and (ii) whether the seller raises the maximum revenue

possible. Notice that if resale is permitted and the object is not allocated to the most-caring

potential buyer, then this agent and the current owner can be better off by trading between

them (i.e. they can find an improving-pareto allocation).

Since a mechanism can be viewed as a game or as a set of rules and institutions, clearly it

does matter who chooses the mechanism (i.e. who is the mechanism designer), which depends

again on the setting of the problem. In the case of public goods, the designer is normally

the government that chooses the structure through which the selected level of public good is

financed. Similarly, in an auction the seller normally chooses the format on which it is run,
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determining specific rules for declaring winners and collecting payments. In the case of national

political elections, by contrast, a mechanism is an electoral procedure prescribed regularly by

country’s constitution.

Notice that, if the planner (or mechanism designer) had perfect knowledge over individual pref-

erences, then it would be able to “mandate” the optimal solution. Thus, in an auction setting the

seller could simply award directly the object to buyer who value the object most, provided the

buyer pays the amount established beforehand (which can be zero). Analogously, if a government

has to invest in a public project (e.g. a bridge), then under perfect knowledge of preferences,

it will be built if the total surplus of the population surpasses its cost. So, the difficulty in

the problem -which is the main reason why mechanism design theory exists- is that normally

the planner does not know agents’ preferences, and these have to be elicited before making a

decision. The problem is exacerbated by the fact that individuals (who of course know their

own preferences and resources) have their own objectives, and so may not have the incentive to

behave in a way that reveals what they know. Hence, one of the key properties of a mechanism

must be incentive compatibility, that is the capability of the planner to induce individuals to

reveal their private information accurately, through the design of particular institutions.

Following Maskin (2008), mechanism design theory is centered in answering three basic ques-

tions:

i) When is it possible to design incentive-compatible mechanisms for attaining social goals?

ii) What form might these mechanisms take when they exist?

iii) When is it possible to rule out the existence of such mechanisms on a theoretical basis?

Much of the literature developed in the last 30 years has attempted to provide detailed answers

to these questions.

2.1 A Journey on the Development of MD theory

In his celebrated paper of 1960, Hurwicz defined a mechanism as a communication system in

which participants send messages to each other and perhaps to a message center, and a pre-

specified rule assigns an outcome, for every collection of received messages. Almost at the same

time, William Vicrey wrote a classic paper in 1961, which introduced the famous Vickrey auction

(second price auction). Even today (mainly in the realm of dynamic environments), Vicrey

auction continues to enjoy a special place in the annals of mechanism design. Later, another
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masterpiece was added to the theory by John Harsanyi (1967, 1968a, 1968b) who developed the

theory of games with incomplete information, in particular Bayesian games, through a series of

seminal papers. Even not thought in terms of the MD theory exclusively, Harsanyi’s work has

proved to be at the core of mechanism design and its multiple extensions1. Another influential

paper in this journey was Hurwicz’ 1972, where he formally introduced the concept of incentive

compatibility, which allowed to incorporate incentives in the strategy of players, and then opened

up mechanism design to a myriad of applications. On their part, Clarke (1971) and Grooves

(1973), extended Vickrey mechanism and helped to disentangle how incentive compatibility

works in quasi-linear environments.

Nonetheless, probably the two major advances in the 1970s correspond to the development

of the Revelation Principle and the Implementation Theory. The former outcome, developed

first by Gibbard (1973), and later by Maskin and Myerson, allowed theorists to center the

attention to direct mechanism, leaving the development of real-world mechanisms (which are

normally indirect2) to mechanism designers and practitioners. With respect to implementation

theory, the main concern was focused on the feasibility of designing mechanisms such that all

its equilibria were optimal. Maskin (1999) gave the first general solution to this problem3. In

1980’s and 1990’s the theory made numerous advances, especially with respect to the applications

to specific environments. In the last part of 1990’s and in the new millennium, the majority

of endeavors have been concentrated in generalizing the well-rooted results in the theory, and

extending the main results to dynamic settings (which will be the subject of the next chapter).

2.2 Background Theory

As mentioned before, in many circumstances private individual preferences have to be aggregated

into social preferences, and ultimately into a collective decision trough a process of information

disclosure conducted by the same agents. The way in which such information can be elicited,

and the extent to which the information revelation problem constrains the ways in which social

decision can respond to individual preferences, is the topic of mechanism design.

Following, Mas Colell et al. (1995), consider a set of I agents who must make a collective choice

from some compact set X of possible alternatives. However, prior to the choice, an agent i

1Actually, one of the implementation criterion is based on a Bayesian-Nash equilibrium of the correspondent
game

2Think for example in an auction, a public tender or a fiscal policy
3Even though the paper was published until 1999, it circulated as working paper in 1970’s.
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privately observes his preferences over the alternatives in X. Formally, this is modeled through

the assumption that agents receive a signal θi which determines their preferences (θi is often

called the agent’s type). The compact set of all possible types for agent i is denoted by Θi.

Each agent i is assumed to be an expected utility maximizer, whose Bernoulli-utility function is

given by ui(x, θi), where as usual u(·) is non-decreasing, continuous, and strictly concave.

Since θi is only observed by agent i, the environment is one of incomplete information. Nonethe-

less, agent’s types are drawn from a publicly known prior distribution F with correspondent

density f ≡ dF . Moreover, {θi}Ii=1, and {ui}Ii=1 are also public knowledge.

Because agents preferences depend on the realization of their types θ = (θ1, · · · θI), it is natural

to assume that a collective decision depends on the types as well. To capture this dependence

formally, a social choice function is introduced.

Definition 1. A social choice function is a function φ :
∏I
i=1 Θi → X, that assigns a collective

choice φ(θ1, · · · θI) ∈ X for any profile of types θ ∈
∏I
i=1 Θi.

In many environments, it is desirable that the social choice function satisfies the Paretian prop-

erty, which is stated below.

Definition 2. A social choice function φ :
∏I
i=1 Θi → X is Paretian if for no profile θ =

(θ1, · · · , θI) there exists an x ∈ X such that ui(φ(θ), θ) ≤ ui(x, θ) for all i, and ui(φ(θ), θ) <

ui(x, θ) for at least one i.

If the social function φ(·) is Paretian, any other alternative choice cannot make an agent better

off without worsening the utility of at least another player in the game.

The problem faced by agents is that types θi’s, are not publicly observable, and therefore for

the social choice φ(θ1, · · · θI) to be chosen, when types are actually θ = (θ1, · · · , θI) each agent

i must be relied upon to disclosure her type i. However, for a given function φ(·), some agents

would find optimal for them, not to reveal their types truthfully. The next three examples will

make clear the incentive problem of true revelation for agents involved in the mechanism.

Example 1. Undertaking of a Public Project.

Consider a society in which I agents must decide whether to undertake a public project (for

example, a bridge, a highway, or a dam), whose cost must be funded by the agents themselves.

An outcome is a vector x = (k, t1, · · · tI) where k = 1 if the project is undertaken (k=0 otherwise),

and ti ∈ R is a monetary transfer from (to if ti > 0) agent i. The cost of the project is c, and
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so the set of feasible alternatives for the I agents is

X = {(k, t1, · · · tI) : k ∈ {0, 1}, ti ∈ R and
∑
i

ti ≤ −ck}.

The constraint
∑

i ti ≤ −ck reflects the fact that there is no source of outside funding (i.e.

c +
∑

i ti ≤ 0 if k = 1 and
∑

i ti ≤ 0 otherwise). We assume that agent of type θi has the

following quasilinear Bernoulli utility function:

ui(x, θi) = θik + (m̄i + ti)

where m̄i is the initial endowment of the numeraire (“money”) and θi ∈ R. Here, θi can be

thought as agent i’s willingness to pay for the public project. In this context, a social choice

function f(θ) = (k(θ), t1(θ), · · · tI(θ)) is ex-post efficient if

k(θ) =

{
1 if

∑
i θi ≥ c

0 otherwise

and ∑
i

ti(θ) = −ck(θ)

Suppose that agents wish to implement a social choice function that sastisfies the latter con-

ditions, and in which an egalitarian contribution is followed. That is, one in which ti(θ) =

−(c/I)k(θ).

To consider a simple example, let Θi = {θ̄i} for i 6= 1, and let Θ1 = [0,∞). Suppose that

c >
∑

i 6=1 θ̄i > c(I − 1)/I. In that sense, agent 1 is a pivotal because if θ1 ≤ c −
∑

i 6=j θ̄i the

project is not undertaken, but if θ1 ≥ c−
∑

i 6=j θ̄i and
∑

i 6=j θ̄i − c(I − 1)/I > 0, then it is. Let

us examine agent 1’s incentive for truthfully revealing his type, when θ1 = c −
∑

i 6=1 θ̄i + ε, for

ε > 0. If agent 1 reveals his true preferences, the project will be built becausec−∑
i 6=1

θ̄i + ε

+
∑
i 6=1

θ̂i > c
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In such scenario, agent 1’s utility would be

θ1 + m̄1 − c
I

=
(
c−

∑
i 6=1 θ̄i + ε

)
+ m̄1 − c

I

=
(
c(I−1)
I −

∑
i 6=1 θ̄i + ε

)
+ m̄1

For ε small enough,
(
c(I−1)
I −

∑
i 6=1 θ̄i + ε

)
+ m̄1 is less than m1, which is the utility obtained

if agent 1 claims instead θ1 = 0. As a result the project is not built. Notice that when agent 1

causes the project to be undertaken, he has a positive externality on the other agents. However,

given that he fails to internalize this effect, he has an incentive to understate his benefit from

the project.

Example 2. Allocation of a Single Unit of an Indivisible Private Good.

Consider a setting in which there is a single unit of an indivisible private object that should

be allocated to one of I agents. Money transfers can also be made. An outcome is a vector

x = (y1, · · · , yI , t1, · · · tI) where yi = 1 if the agent i gets the object (yi = 0 otherwise), and ti is

a monetary transfer received by agent i. The set of feasible alternatives is then,

X = {(y1, · · · , yI , t1, · · · tI) : yi ∈ {0, 1} and ti ∈ R for all i,∑
i

yi = 1, and
∑
i

ti ≤ 0}

We suppose that type θi’s Bernoulli utilty function takes the quasilinear form

ui(x, θi) = θik + (m̄i + ti)

where m̄i is agent i’s initial endowment of the numeraire (money) and θi ∈ R is the agent i’s valu-

ation of the good. In this situation, a social choice function f(θ) = (y1(θ), · · · , yI(θ), t1(θ), · · · tI(θ))
is ex post efficient if it always allocates the good to the agent who values it most, and if it involves

no “waste” of money. That is, if for all θ ∈
∏
i Θi,

yi(θ) = (θi −max{θ1, · · · , θI}) = 0 for all i

and ∑
i

ti(θ) = 0
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.

Two special cases that derive from this general setting are bargaining schemes, and auction

setting (the case of first price and Vickrey auctions will be covered in detail in a further section).

Notice that in the two examples examined here, the planner (either the government that intends

to undertake the public project, or the seller that tries to allocate the object) can ask the

type directly to the potential buyers, in order to choose the outcome ruled by the social choice

function. Nonetheless, in general it is necessary to consider other structures to implement a

social choice, rather than directly asking the players to reveal their type. This could be achieved

through the design of institutions which agents interact with, and which implicitly determine

their behavior. The formal notion of such institutions is known as a mechanism.

Definition 3. The mechanism Ξ(S1, · · · , SI) is a collection of I strategy sets (S1, · · ·SI) and an

outcome function ψ :
∏I
i=1 Si → X.

In a nutshell, a mechanism is a rule that governs the way in which agents’ actions (circumscribed

to Si for each i) turn into a collective decision.

Formally, the mechanism Ξ combined with the space of possible types
∏I
i=1 Θi, the probability

density f , and the family of Bernoulli-utility functions {ui}Ii=1, conform a game of incomplete

information. A strategy for agent i in the game of incomplete information induced by Ξ, is a

function si : Θi → Si. That is, for any type, the agent selects an action in her correspondent

space.

Loosely speaking, a mechanism Ξ implements the social choice function φ, if the Bayes-Nash

equilibrium of the game induced by Ξ, yields the same outcome as φ, for each θ ∈
∏I
i=1 Θi. The

next definition states this formally.

Definition 4. The mechanism Ξ(S1, · · · , SI) implements the social choice function φ(·) if

there is an equilibrium strategy profile (s∗1(·), · · · s∗I(·)) of the game induced by Ξ such that

ψ(s∗1(·), · · · s∗I(·)) = φ(θ1, · · · θI) for all (θ1, · · · θI) ∈
∏I
i=1 Θi.

It is necessary to call attention on two aspects of the latter definition. The first is that the

equilibrium solution is not explicitly stated, and therefore, any consistent solution for a Bayesian

game fits in such definition. Moreover, the concept is silent on which equilibrium to choose if

the game has multiple equilibria. The only requisite is that the equilibrium played (whatever

be its definition) be coherent with the outcome displayed by φ.
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2.2.1 Direct Mechanisms

Notice that the implementable space of functions is very large, because it involves the consid-

eration of any kind of mechanism. Fortunately, a result derived by Myerson (1986), known as

the revelation principle, shows that, to accomplish this daunting task, it is only necessary to

take into account direct mechanisms: those in which each agent is asked to report her type, and

given the announcements (θ̂1, · · · θ̂I), the alternative φ(θ̂1, · · · θ̂I) ∈ X is chosen.

Definition 5. A direct revelation mechanism, is a mechanism in which Si = Θi for all i, and

in which ψ(θ) = φ(θ) for all θ ∈
∏I
i=1 Θi.

Furthermore, the revelation principle shows that it is possible not only restrict the attention to

direct mechanisms, but on those in which telling the truth is an optimal strategy for each agent.

When that is possible, it is said that the mechanism is truthfully implementable.

Definition 6. The social choice function, φ is truthfully implementable, or incentive compatible,

if the direct revelation mechanism Ξ(Θ1, · · ·ΘI , ψ(·)) has an equilibrium in which s∗i (θi) = θi for

all θi ∈ Θi, and all i.

Basically that definition says that φ is incentive compatible if telling the truth is the Bayes-Nash

equilibrium of the game induced by Ξ.

2.2.2 Dominant Strategies Implementation

In the present incomplete information environment, strategy si : Θi → Si is a weakly dominant

strategy for agent i in the mechanism Ξ(S1, · · ·SI , ψ(·)), if for all θi ∈ Θi and all possible

strategies s−i ≡ (s1, · · · , si−1, si+1 · · · , sI) ∈
∏
j 6=i Si ≡ S−i,

Eθ−i
[ui(ψ(si(θi), s−i(θ−i)), θi)|θi] ≥ Eθ−i

[ui(ψ(ŝi(θi), s−i(θ−i)), θi)|θi] (2.1)

for all ŝi ∈ Si. Holding for all s−i(·), and all θi, the latter is equivalent that for all θi ∈ Θi

ui(ψ(si(θi), s−i), θi) ≥ ui(ψ(ŝi, s−i), θi)

for all ŝi ∈ Si and all s−i ∈ S−i.

Definition 7. The strategy profile s∗ = (s∗1, · · · s∗I) is a dominant strategy equilibrium of mech-
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anism Ξ(S1, · · ·SI , ψ(·)) if for all i, all θi ∈ Θi,

ui(ψ(s∗i (θi), s−i), θi) ≥ ui(ψ(ŝi, s−i), θi)

for all ŝ−1 ∈ Si, s−i ∈ S−i.

Focusing on the equilibrium concept, the next definition introduces the notion of dominant

strategies equilibrium.

Definition 8. The mechanism Ξ(S1, · · ·SI , ψ(·)) implements φ(·) in dominant strategies if there

exists a dominant strategy equilibrium of Ξ, s∗ = (s∗1, · · · s∗I), such that ψ(s∗(θ)) = φ(θ) for all

θ ∈ Θ.

Moreover, if the dominant equilibrium strategies is one of the truth-telling class, then φ(·) is

truthfully implementable in dominant strategies.

Definition 9. The social choice function φ(·) is truthfully implementable in dominant strategies

if s∗i (θi)=θi for all θi ∈ Θi, all i = 1, · · · , I, is a dominant strategy equilibrium of the direct

mechanism Ξ(Θ1, · · ·ΘI , φ(·)).

Given stated this, it is now possible to introduce the revelation principle in dominant strategies.

Proposition 1. Suppose that there exists a mechanism Ξ(S1, · · ·SI , ψ(·)) that implements the

social function φ(·) in dominant strategies. Then, φ is truthfully implementable in dominant

strategies.

Proof. If Ξ(S1, · · ·SI , ψ(·)) implements φ in dominant strategies, then there exists a profile of

strategies s∗ = (s∗1, · · · , s∗I) such that ψ(s∗(θ)) = φ(θ) for all θ. Then, for all θi ∈ Θi.

ui(ψ(s∗(θi), θ−i), θi) ≥ ui(ψ(ŝi, s−i), θi) (2.2)

for all ŝi ∈ Si, s−i ∈ S−i. Condition (2.2) implies in particular that for all i, all θi ∈ Θi

ui(ψ(s∗(θi), s
∗
−i(θ−i), θi) ≥ ui(ψ(s∗(θ̂i), s

∗
−i(θ−i), θi) (2.3)

for all θ̂i ∈ Θi, all θ−i ∈ Θ−i. Since, ψ(s∗(θ)) = φ(θ) for all θ, (2.3) means that

ui(φ(θi, θ−i), θi) ≥ ui(φ(θ̂i, θ−i), θi)

for all θ̂i ∈ Θi θ−i ∈ Θ−i. That is, φ(·) is truthfully implementable in dominant strategies. �
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Implementation in dominant strategies can be expressed alternatively in terms of alternatives’

lower countour sets. Define a lower countour set of an alternative x when agents i has type θi,

by

Li(x, θi) = {z ∈ X : ui(x, θi) ≥ ui(z, θi)}

Using, this notation, the set of social choice functions that can be truthfully implementable in

dominant strategies is given by the following proposition.

Proposition 2. The social choice function φ(·) is truthfully implementable in dominant strate-

gies if and only if for all i, all θ−i ∈ Θ−i, and all pairs of types for agent i, θ′i and θ′′i ∈ Θi, we

have

φ(θ′′i , θ−i) ∈ Li(φ(θ′i, θ−i), θ
′
i)

and

φ(θ′i, θ−i) ∈ Li(φ(θ′′i , θ−i), θ
′′
i )

Proof. See Mas Colell et al. (1995). �

Another important result with respect to implementation in dominant strategies is the so-called

Gibbard-Satterthwaite theorem, disovered independently by Gibbard (1973), and Satterthwaite

(1975). It is a sort of impossibility result in the spirit of Arrow’s theorem, that qualifies the

class of mechanisms that can be implemented in dominant strategies. In general, it shows that

for a very large class of problems, there is no hope of implementing satisfactory social choice

functions in dominant strategies.

To delve into the necessary elements of the theorem, let P denote the set of all rational preference

relations � on X having the property that not two alternatives are indifferent, and let Pi = {�:

�i=�i (θi) for some θi ∈ Θi} be agent i’s set of possible ordinal preference relations over X.

Moreover, we denote φ(Θ) = {x ∈ X : φ(θ) = x for some θ ∈ Θ}. The following two properties

of social choice functions, are also necessary to understand the main result of Gibbard and

Satterthwaite.

Definition 10. The social choice function φ(·) is dictatorial if there is an agent i, such that,

for all θ = (θ1, · · · θI) ∈ Θ

φ(θ) ∈ {x ∈ X : ui(x, θi) ≥ ui(y, θi) for all y ∈ X}

In summary, a social choice function is dictatorial if it always chooses a top alternative for some

agent i.
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Definition 11. The social choice function φ(·) is monotonic if, for any θ, if θ′ is such that

Li(φ(θ), θi) ⊂ Li(φ(θ), θ′i), then, φ(θ′) = φ(θ)

Monotonicity requires the following: Suppose that φ(θ) = x, and that the I agents’s types

change to a θ′ = (θ′1 · · · θI), with the property that no agent finds that some alternative that was

weakly worse for him than x when his type was θi becomes strictly preferred to x when his type

is θ′i. Then x must still be the social choice. Once introduced such definitions, we now state the

Gibbard-Satterthwaite theorem.

Theorem 1. Suppose that X is finite and contains at least three elements, that Pi = P for all i,

and that f(Θ) = X. Then the social choice function f(·) is truthfully implementable in dominant

strategies if and only if it is dictatorial.

Proof. See Mas Colell et al. (1995). �

Given this negative conclusion, if we are to have any hope of implementing desirable social

choice functions, we must either focus on more restricted environments, or weaken the demands

of the implementation concept by allowing less robust equilibrium notions, such as Bayesian

Nash equilibria, which will be reviewed in the next section.

2.2.3 Bayesian Implementation

Another important implementation concept is the Bayesian implementation, which relies on the

knowledge of the joint distributions of types by all agents in the game. As it will be seen, it is a

weaker solution than its dominant strategies counterpart. To discuss implementation issues, we

begin by introducing the concept of a Bayesian-Nash equilibrium first.

Definition 12. The strategy profile s∗ = (s∗1, · · · , s∗I) is a Bayesian-Nash equilibrium of mech-

anism Ξ(S1, · · ·SI , ψ(·)) if for all i, θi ∈ Θi,

Eθ−i
[ui(ψ(s∗i (θi), s

∗
−i(θ−i)), θi)|θi] ≥ Eθ−i

[ui(ψ(ŝi(θi), s
∗
−i(θ−i)), θi)|θi] (2.4)

for all ŝi ∈ Si.

Definition 13. The mechanism Ξ(S1, · · ·SI , ψ(·)) implements the social function φ(·) in Bayesian-

Nash equilibrium, if there is a Bayesian-Nash equilibrium of Ξ, s∗ = (s∗1, · · · , s∗I) such that

ψ(s∗(θ)) = φ(θ) for all θ ∈ Θ.
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Analogously to the dominant strategies case, it will be seen that a social choice function φ is

implementable in Bayesian equilibrium if it is truthfully implementable according to the following

definition.

Definition 14. The social choice function φ(·) is truthfully implementable in Bayesian-Nash

equilibrium, if s∗i (θi)=θi for all θi ∈ Θi, all i = 1, · · · , I, is a Bayesian-Nash equilibrium of the

direct mechanism Ξ(Θ1, · · ·ΘI , φ(·)).

The ability to restrict the analysis (without loss of generality) to truthfully implementable social

choice functions, is a consequence of the revelation principle for Bayesian implementation.

Proposition 3. Suppose that there exists a mechanism Ξ(S1, · · ·SI , ψ(·)) that implements the

social function φ(·) in Bayesian-Nash equilibrium. Then, φ is truthfully implementable in

Bayesian-Nash equilibrium.

Proof. If Ξ(S1, · · ·SI , ψ(·)) implements φ in Bayesian-Nash equilibrium, then there exists a pro-

file of strategies s∗ = (s∗1, · · · , s∗I) such that ψ(s∗(θ)) = φ(θ) for all θ. Then, for all θi ∈ Θi.

Eθ−i
[ui(ψ(s∗i (θi), s

∗
−i(θ−i)), θi)|θi] ≥ Eθ−i

[ui(ψ(ŝi, s
∗
−i(θ−i)), θi)|θi] (2.5)

for all ŝi ∈ Si. Condition (2.5) implies in particular that for all i, all θi ∈ Θi

Eθ−i
[ui(ψ(s∗i (θi), s

∗
−i(θ−i)), θi)|θi] ≥ Eθ−i

[ui(ψ(s∗i (θ̂i, s
[∗]−i(θ−i)), θi)|θi] (2.6)

for all θ̂i ∈ Θi. Since, ψ(s∗(θ)) = φ(θ) for all θ, (2.6) means that

Eθ−i
[ui(φ(θi, θ−i), θi)|θ] ≥ Eθ−i

[ui(φ(θ̂i, θ−i), θi)|θi]

for all θ̂i ∈ Θi. That is, φ(·) is truthfully implementable in Bayesian equilibrium. �

From the definitions, it is possible to notice immediately that the Bayesian implementation

concept is a weaker notion than the dominant strategies mode. Since any dominant strategies

equilibrium of the game induced by Ξ, is a Bayesian-Nash equilibrium of the same mechanism,

any social function φ(·) which is implementable in dominant strategies is also implementable in

Bayesian-Nash equilibrium. The fact is that within Bayesian implementation, truth telling need

only give an agent i her highest payoff averaging over all possible θi that might arise for the

other agents, while the dominant strategy concept requires that truth telling be agent i’s best

strategy for every possible θ−i.

16



A very popular setting in which mechanism design theory emerges naturally is in the adminis-

tration of auctions, which can be seen as institutions built to replace over-the-counter markets.

Example 2 showed how allocation of a single unit object can be addressed in the realm of theory

discussed here. A natural option is to ask to potential buyers directly about their valuation

over the object, and assign it to the agent who values it most. However, there are other indirect

mechanisms that can be used to attain the same goal, but with the advantage of avoiding the

perverse incentives agents have to hide the truth. The next section discuss in detail the main

two auctions formats, namely, first price auction and the Vickrey auction.

2.3 First Price and Vickrey Auctions as Static Mechanisms

Modern auction theory is founded in the pioneer work of Vickrey (1961), who derived the

main results of strategic behavior of buyers and sellers under different auction schemes, and

introduced the celebrated equivalence revenue theorem, which states that under some general

conditions, a seller will raise the same revenue, independently of the auction format utilized.

Later advancements have introduced different assumptions over the information framework,

among which the work of Myerson (1981), Riley and Samuelson (1981) and Milgrom (1989),

stand out. For the sake to analyze the main properties of such mechanisms, models assume a

single-object environment, and then extend some properties to multi-object auctions, in which

combinatorial issues make the problem harder to be solved. Nonetheless, this section will be

focused in the former class.

Suppose there is a single object for sale and I potential buyers who are bidding for the object at

hand. A bidder i attaches a value of Vi to the object -which constitutes the maximum amount

she is willing to pay for it. Each Vi is independently and identically distributed on some compact

support [Vl, Vu] ∈ R+ according to a strictly increasing, right continuous, distribution F . For

convenience, it is assumed that F admits a continuous density f = dF , and that -without loss

of generality- Vl = 0. If the distribution happens to have the entire nonnegative real line as a

full support, it is assumed that E[Vi] <∞.

Following the representation of a Bayesian game, bidder i knows the realization vi of Vi, but

only knows that other bidders’ values are independently distributed with respect to F . To avoid

risk considerations, bidders are considered risk-neutral agents whose aim is to maximize their

expected value. That is, there is no bias to participate or not in a lottery per se, and only the

final expected profit is taken into account. All information’s structure, other than the realization
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of the valuations, is assumed to be public to all participants. Specifically, the number of bidders

is considered fixed and known before hand by the seller, and the distribution function F is

common knowledge.

At the time, the mechanism is considered free of transactional costs, in the sense agents do not

have to pay a fee for participate in the auction, and the seller does not run any administrative

cost to operate it. Moreover, liquidity and inter-temporal constraints are ruled out from the

problem, thus, it is assumed that at any moment a bidder i has sufficient resources, up to her

maximum valuation, to bid and pay -if she wins4- an amount of bi. Since all bidders face the

same distribution from which values are drawn, the environment is known as the symmetric

bidders case. The implications of this theoretical framework will be examined on the two major

simultaneous-move auctions format: first and second price sealed-bid auctions. In such schemes,

all bidders are called to move simultaneously and share the same information set, unlike English

and Dutch formats, where information sets are deviled sequentially, much in the spirit of a

filtration. Albeit online auctions can be run sequentially, its underpinnings are those of the

former.

2.3.1 Optimal Strategy for Bidders and Bayesian Nash Equilibrium (BNE)

As mentioned before, first and second price sealed-bid auctions conform a Bayesian game among

bidders. Following Selten (1965), a strategy for a bidder is a function from the space of valuations

to the nonnegative real line, namely bi : [0, Vu] → R+. Here, bi is a decision rule that assigns

to each type of bidder5, an amount of money to compete for the object being auctioned. Since

agents would follow symmetric strategies, the interest lies in finding out the properties of the

symmetric equilibrium. Although first-price auction is a more intuitive format, the derivation

of second price auction is presented before, because it is identifiable with an open ascending

(English) auction, which is widespread in online mechanisms, and its equilibrium is easier to

derive. Under that format, the payoff of bidder i who bids bi can be summarized in

πi =

{
vi −maxj 6=i bj if bi > maxj 6=i bj

0 if bi < maxj 6=i bj
(2.7)

4Strictly speaking, there are schemes known as all-pay contests in which all participants shall pay the bid,
independently if they win the object. Nonetheless, here are considered cases in which only the winners pay. For
more information on all-pay contests, see Siegel (2007).

5Determining a type by her maximum willingness to pay.
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Like many models in literature, we assume that if there is a tie, the object is assigned to each

winner bidder with equal probability. The following proposition shows the BNE bidder strategy

in that format.

Proposition 4. In a second price sealed-bid auction, bi(vi) = vi constitutes the unique BNE of

the game.

Proof. See Krishna (2002).

Once defined the optimal strategy a bidder would follow in this framework, it is possible to

calculate the expected amount she would pay in equilibrium. As a matter of convenience, fix a

bidder i and let the random variable X(1),i denote the maximum value among the I−1 remaining

bidders (i.e. the highest statistic order of {Vj}j 6=i). Let also H denote the distribution function

of X(1),i, which have h as its density. Given the assumption of independence, it is clear that for

all x, H(x) = F (x)I−1. According to this, the expected payment of a bidder in a second price

format corresponds to

aIIi (vi) = Prob[Win]× E[2nd highest value | vi is the highest value]

H(vi)× E[X(1),i|X(1),i < vi] (2.8)

On the other hand, when the auction is run as a first-price, payoffs are given by

πi =

{
vi − bi if bi > maxj 6=i bj

0 if bi < maxj 6=i bj

As before, in the case of a tie, winners participate in a lottery in which all of them have equal

probability to get the object.

Bidding their true value is not a weakly dominant strategy for buyers in a first price auctions, as

it is in the second price scheme. Here, if the buyer wins the auction following this strategy, she

will obtain a zero payoff, but if maxj 6=i bj < vi, then any bid bi ∈ (maxj 6=i bj , vi) would assure a

strictly possitive payoff. So, given the decision rules of the rest of buyers, each individual faces a

trade off in her own bidding strategy, because an increase in the bid will increase the probability

of winning, but will decrease the gains from winning. Equilibrium strategies are summarized in

the following proposition.

Proposition 5. In a first price sealed bid auction bi(vi) = E[X(1),i|X(1),i < vi] for all i =

1, 2, · · · I constitutes a BNE profile for this game.
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Proof. See Krishna (2002).

Unlike second-price auctions in which the winner pays the maximum bid of her opponents, in

the first-price format bidders end up paying their own bids, if they win. Therefore, given the

strategy stated in proposition 2, the expected payment of a bidder with value v is

aIi (vi) = Prob[Win]×Amount of bid = H(vi)× E[X(1),i|X(1),i < vi] (2.9)

which is the same as in the second-price auction

Because the expected revenue of the seller is just the summation of the ex ante expected pay-

ments of the bidders, this is the same under both formats. This somewhat stunning result is a

corollary of a general theorem known as the equivalence revenue theorem, firstly introduced by

the harbinger work of Vickrey (1961), and extended later for Myerson (1981) to a broader class

of mechanisms.

Indeed, the ex ante expected payment of a particular bidder in either format corresponds to

E[a(V )] =

∫ Vu

0
a(v)f(v)dv =

∫ Vu

0

(∫ v

0
xh(x)dx

)
f(v)dv (2.10)

Applying Fubbini’s theorem to the latter expression it is obtained that

E[a(V )] =

∫ Vu

0

(∫ Vu

x
f(v)dv

)
xh(x)dx =

∫ Vu

0
x(1− F (x))h(x)dx (2.11)

The revenue a seller expects to receive in such mechanism is I times the expected payment of

an individual bidder, so it can be computed as:

E[R] = I × E[a(V )] = N

∫ Vu

0
x(1− F (x))h(x)dx (2.12)

Nonetheless, even when sellers can expect the same revenue in both formats, they do not exhibit

the same level of risk. In second price auctions, prices can vary between 0 and Vu, but in its first

price counterpart they can only vary between 0 and E[X(1),i]. In that sense, the distribution

of prices in the former case is a mean preserving spread of the latter. Therefore, in the case of

risk-averse sellers, they would prefer the first-price format, under the assumption that buyers

are risk-neutral (Krishna, 2006).

20



2.3.2 Reserve Prices

In the analysis conducted before, sellers do not control the administration of the auction, beyond

to decide under which format it will be framed in. In particular, they just receive all offers and

allocate the object according to each scheme’s rule. However, since a priori an auction involves

more uncertainty than a bilateral bargaining, or an over-the-counter mechanism, sellers might

opt to impose a reserve price vR under which the object is never sold.

Clearly, no buyer i whose valuation is lower than such reserve price, vi < vR, can make a positive

profit in the auction, but for the rest of participants it has no impact on their equilibrium

strategies. Thus, in a second price auction, bidding their true value is still a weakly dominant

strategy for all bidders. Moreover, the expected payment of a bidder with value vi = vR is

vRH(vR), and for those with vi > vR is

aIIi (vi, vR) = vRH(vR) +

∫ vi

vR
xh(x)dx (2.13)

due to the winner will pay the reserve price vR, whenever maxj 6=i bj < vR. Analogously, in the

first-price auction scheme, the equilibrium bidding strategy for any bidder i with value vi ≥ vR

is given by

bi(vi) = E[max{X(1),i, v
R}|X(1),i < vi] = vR

H(vR)

H(vi)
+

1

H(vi)

∫ vi

vR
xh(x)dx (2.14)

and her expected payment is given by the same expression as in (2.13).

Analogously to (2.10), the ex ante expected payment of a bidder is

E[a(V, vR)] =

∫ Vu

0
a(v, vR)f(v)dv = vR(1− F (vR))H(vR) +

∫ Vu

vR
x(1− F (x))h(x)dx (2.15)

As it was stated, the seller wants to maximize the expected benefits, and therefore will try to set

the reserve price at the optimum level. Notice first that there is a tradeoff between the expected

gains received, given that the object is effectively sold, and the probability of allocating the object

to some bidder. As bigger the reserve price is, bigger is the probability that the maximum bid

be lower than the threshold established. However, a big reservation price sets a higher minimum

price at which the object could be sold, and therefore increases the potential revenue the seller

would accrue if the object is actually sold to the maximum bidder. For the sake of pointing out

the analysis of reserve prices in the actual context, let v0 ∈ [0, Vu) denote the value that the
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seller attaches to the object (i.e. the value of use that the object would render to the seller).

Clearly, the seller will not set a reserve price vR lower than v0, since it would obtain less benefits

than those she would obtain by keeping it. The overall payoff the seller expects by setting a

reservation price vR ≥ v0 is

Πv0 = I × E[a(V, vR)] + F (vR)Iv0

Taking the first derivative of Π0 with respect to vR, it is obtained that

dΠv0

dvR
= I[1− F (vR)− vRf(vR)]H(vR) + IH(vR)f(vR)v0

Recall that a hazard rate of a distribution F is defined as λ(v) = f(v)/1−F (v). Therefore, the

latter expression can be rewritten as

dΠv0

dvR
= I[1− (vR − v0)λ(vR)(1− F (vR))H(vR)

Notice that if v0 > 0, the derivative of Π0 at vR = v0 is N(1−F (vR))H(vR) > 0, which implies

that there is a room to increase the reserve price. On the other hand, if v0 = 0, then by setting

vR = 0, the whole derivative becomes zero, but as long as the hazard rate is bounded, the

expected payoff function reaches a local minimum at vR = 0. As a consequence, a seller should

always set a reserve price that exceeds v0.

Setting the first order conditions, it turns out that the reserve price should satisfy:

vR
∗ − v0λ(vR

∗
) = 1⇒

vR
∗ − 1

λ(vR∗)
= v0

If the hazard rate λ(·) is increasing, the necessary condition is also sufficient, and it is independent

of the number of participants. Therefore, the expected gain from setting a reserve price above

the use of value for the seller (v0) surpasses the expected loss, a result commonly known as the

exclusion principle. It reflects the fact that it is optimal for the seller to exclude some bidders

whose valuations lie in the range (v0, v
R).

Even though the use of a reserve price could increase the revenue of the seller in any of the

formats explored, it could have harmful effects on efficiency. To see this, consider an auction

(second or first-price) without reservation prices, in which the seller attaches a zero value to

22



the object for sale. Clearly, the object will be always allocated to the agent who values it more

(although the final price paid depends on the format itself). However, when there exists a reserve

price, if the maximum bid lies in the interval (v0, v
R), the seller would keep the object, even

when there is a bidder with a higher valuation.

2.3.3 Entry Fees

A reserve price vR > v0 excludes all bidders with valuations lower than vR from the auction.

Those with valuations exactly equal to vR are indifferent to participate, because would obtain

a zero payoff. An alternative tool that a seller can implement to exclude buyers with low

valuations is the collection of an entry fee (i.e. a fixed and non-refundable amount of money

that each bidder has to pay, in order to be allowed to participate in the auction).

The same set of bidders that are excluded by a reserve price of vR can be excluded by setting

an entry fee of

ef = vRH(vR) +

∫ vR

0
xh(x)dx =

∫ vR

0
H(x)dx

which corresponds to the expected payoff of a bidder with a valuation of vR, in either format.

Clearly, a bidder i with valuation vi < vR would not agree to pay the entry fee, ef , in order to

participate in the auction. Hence, a reserve price and an entry fee are identifiable, in the sense

that for any of them the counterpart tool excludes the same set of bidders.

Many other issues in the static-mechanism approach of auctions have been investigated in lit-

erature, including asymmetries in the valuations, interdependences, budget constraints, and

changes in risk profiles. However, the core of theory is contained in the main results presented

here, and actually it constitutes the baseline model that the new generation of works try to

adaptate to dynamic mechanisms.
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Chapter 3

Dynamic Mechanism Design

Dynamic or online mechanisms extend the methods of static mechanism design to environments

with multiple agents and private information. Decisions must be made as information about

types is revealed online and without knowledge of the future. The relevance of such kind of

mechanisms is evident since they are pervasive in many environments, such as the following:

i) Selling airline tickets to buyers arriving over time.

ii) Allocating computational resources (bandwidth or CPU) to jobs arriving over time.

iii) Allocating the electromagnetic space of a country to bids arriving online.

iv) Selling a player’s contract to another team according to a stochastic stream of bids.

v) Selling adverts on a search engine to a possibly changing group of buyers and with uncer-

tainty about the future supply of search terms.

vi) Allocating tasks to a dynamically changing team of agents.

In each of these settings at least one of the following is true: either agents are dynamically

arriving or departing, or there is uncertainty about the set of feasible decisions in the future.

The dynamics of agent arrivals and departures, coupled perhaps with uncertainty about the

state of the environment, makes the problem of online mechanism design very different from its

static counterpart. New considerations include:

i) Decision must be made without information about agent types not yet arrived, along with

uncertainty about which decisions will be feasible in future periods.
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ii) Agents can misrepresent their arrival and departure times in addition to their valuation

for sequences of decisions. Because of this, agent strategies also have a temporal aspect.

iii) Only limited misreports of type may be available. For example, it may be impossible for

an agent to report an earlier arrival time than its true arrival.

Last examples show that situtations in which individuals behave strategically under dynamic

information disclosure are now widespread, and many aspects of statis mechanism design should

adjusted to address such kind of things. A example that clarifies the use of the different pieces

of the theory in a dynamic environment is the so-called secretary problem. The next section

introduces the problem and explores many possible extensions by treating it as an online auction.

3.1 Online Auctions as an Extension of the Secretary Problem

The classical secretary problem can be summarized as follows. A known number n of secretaries

are intended to be hired by a manager of a firm, who interview them in an random order

within a time interval T := [0, T ], for T fixed and sufficiently large. All secretaries arrive

online-uniformly in T , so that all permutations n! are equally likely to be considered. After the

manager interviews a secretary i, she is able to learn its quality vi (presumably a measure of her

abilities to perform the job vacant) and rank it with respect to all qualities vj , j = 1 · · · (i−1) of

candidates interviewed so far. At that point, the manager should make the irrevocable decision

of hiring her (in which case the process stops), or rejecting her -interviewing the next secretary

in the sequence- and facing the same choice problem as before. It is assumed that the manager

incurs in an infinite monetary loss if the vacant is not filled, so if she happens to interview the

last secretary in the sequence, then she must hire her.

The manager’s aim is to maximize the probability of hiring the best secretary from the pool of

applicants, for what she has to assess the tradeoff between stop too soon and wait too much.

Since the manager is unable to go back and hire a candidate previously dismissed, if she stops

too soon, then incurs in the risk of hiring an apparently-suitable candidate when in fact an even

better one might be still to come. On the other hand, if she waits too much, then incurs in the

jeopardy of finding out that the best (or even the ones in the top of the distribution) was (were)

rejected earlier on.

In the standard formulation of the problem, the candidates do not control the order in which

they are interviewed, rather such order is uniformly random1. Therefore, if the manager selects a

1In a general setting, the order and values vi could be decided by an adversary, as long as from the perspective
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candidate at random, the probability of choosing the best is 1/n. That unconditional probability

actually sets a lower bound for the performance of any other algorithm that takes into account

the sequential nature of the problem. In that sense, consider the following strategy suggested

to the manager. Interview the first n/2 secretaries but do not hire anyone; set maxn/2(v) as the

maximum quality encountered in this first half of the pool; and hire the first candidate in the

second-half whose quality surpass maxn/2(v). Pursuing such algorithm gives a 1/3-competitive

ratio, which is better than choosing at random for all n > 3. Lindley (1961) and Dynkin

(1963) showed that the optimal generalization of such strategy calls for letting pass the first

k = bn/ec applicants, and hiring the first one in the complementary half-space whose quality

surpass maxn/e(v). This algorithm gives a 1/e ratio, which is the most competitive. Actually,

such strategy is known as the 37% rule, because the probability of selecting the best candidate

is no worse than 1/e ≈ 0.37.

Since it was first introduced, the secretary problem has become a natural starting point in the

formulation of more complex optimal stopping problems, and its applications are recurrent in

engineering, computer sciences, finance and economics. For example, in the latter field it has

been utilized to set optimal contracts in dynamic environments, or as a dual formulation to

search theory for finding an optimal job, a suitable partner to trade with, or even, the best

spouse to get married. This myriad of applications has conferred it many alternative names in

literature, such as the marriage problem, the sultan’s dowry problem or the Gogol game.

3.1.1 K-choice and Knapsack Secretary Problems

There have been many endeavors in literature to extend the secretary problem to a broader

family of optimal stopping problems. One branch has generated theory and algorithms to solve

combinatorial optimization problems such as the k-choice and the knapsack secretary problems.

In those, the idea is finding an optimal way to sequentially choose k elements from a set of n,

over a finite time interval, to maximize some value function g(·), given a capacity constraint.

The k-secretary problem is a direct extension of the standard problem, (k = 1), stated above.

Following the same rule as before, Babbaiof et al. (2007) has shown, via complex counting, that

this algorithm has ratio no worse than e. Nonetheless, Kleinberg (2005) has demonstrated that

when k goes to infinity, the corresponding ratio is bounded from below and above by c +
√
k

and C +
√
k, for some constants 0 < c < C.

On its part, the knapsack problem is a celebrated puzzle in combinatorial optimization theory.

of the manager the probability of facing any sequence still being symmetric.
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Its main idea can be captured in the following example. Suppose the government of your country

is trying to allocate a given portion S of the national electromagnetic space among n different

competitors, who decide what fraction they want to buy and how much they are willing to pay

for it. Each potential buyer i arrive at the same time and place her offer (which is composed

by a space request and a maximum willingness to pay for it (si, vi), 0 < si ≤ S, vi > 0). If

the office in charge of granting the licenses wants to maximize benefits, it has to select which

offers accept to maximize
∑

i vi, subject to the capacity constraint
∑

i si ≤ S. Formally, the

ordered pair (si, vi) constitutes a long term contract in which the government commits to allow

the firm i to exploit the portion of the electromagnetic space granted for the life of the contract,

in exchange for vi. Notice that a complete solution of the problem requires the verification of

all feasible combinations in the value function, which, when n is sufficiently large, cannot be

solved in polynomial time (i.e. the problem is non-polynomial complete). However, it is possible

to obtain quasi-optimal solutions in reasonable time using meta-heuristics techniques such as

simulated annealing, tabu search or genetic algorithms.

When the n potential buyers do not arrive at the same time, but online according to some

stochastic process, the problem is called the knapsack secretary problem. In this, the manager

does not know the joint distribution of the requests, and therefore when face an offer (si, vi)

should evaluate not only the risk that another individual j could offer later a higher value vj > vi

for the same fraction of the space si, but also the risk that very attractive offers could not be

accommodated later on if there is not enough room for them. Although the knapsack secretary

problem is a harder refinement of the baseline case, the strategy followed to approximate a so-

lution shares the same basic principle of letting pass some offers without accepting any of them,

and construct a decision rule based on the information learned. Specifically, the algorithm ob-

serves a constant fraction of the offers without accepting any, ranks them by their value-density

vi/si, and sets a threshold derived from those sampled. After the initial sequence of offers is

considered, elements that surpass the threshold previously defined are chosen. Nevertheless,

some “modifications” should be added in order to assure enough room for offers with extraordi-

nary high value-density that arrive in the non-trade segment of the time interval (Babbaiof et

al. 2007, 2008).

3.1.2 Time discounting

So far, the kind of problems considered here has been framed in a time-independent environment,

in which the value attached to an element is independent of the time it was selected. However,
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this assumption can be overly simplistic in inter-temporal choice problems, especially of the

kind widespread in economic applications. Following the electromagnetic space example above,

suppose that the office in charge is interested in granting the licenses for perpetuity since the

contract is signed, in exchange for some annual fee, vi. In the notation introduced before, let

(si, vi) stand for the space quota and the annual fee the buyer is proposing to the office, and

denote τi = τ((si, vi)) the arrival time of (si, vi) in the random sequence of offers. Therefore, if

the office accept the request of buyer i, the benefit obtained would be πi =
∑∞

t=τi
vid(t), where

d(t) is an arbitrary decreasing discount time function, known beforehand by all participants2.

The latter is a version of the knapsack secretary problem with arbitrary discounting, but same

principle can be applied to the simple case. In the same fashion, suppose that all secretaries

have a constant productivity and infinite life-span. Assume that the firm can obtain a level

of benefits vi if secretary i is hired, so that the present value of the flow of benefits is given

by πi =
∑∞

t=τ(i)(1/1 + r)tvi, where d(t) = (1/1 + r)t is a geometric discount rate for a fixed

r ∈ R+, and τi is defined as before. The use of 1/(1 + r), where r is the current interest

rate in the market, is the most utilized discount factor in economics because it is dynamically

consistent3 in the solution of dynamic programming optimization problems. Moreover, its use

improve dramatically the accuracy of the kind of algorithms presented here, which in the case of

arbitrary discount rate d(t) is not more competitive that
√

2, even if the entire space of values

is known in advance (Babbaiof et al., 2008).

3.1.3 Incentive Compatibility and Incentive Rationality

Up to now, the motivating examples presented to generalize the secretary problem have taken

for granted that all agents will be willing to participate in the online mechanism proposed, and

will reveal their true valuation to the correspondent decision-maker. However, there might be

scenarios in which the design of the online scheme would make beneficial to an arbitrary agent

i, who arrived at time τi, reveal a different value to vi. The former are known as incentive-

compatible or truthful online mechanisms, which are the case when the objective function g(·)
of the decision-maker is monotonic in the one-time value reported by agents. To see this,

recall that the optimal strategy for online mechanisms presented so far, asks for letting pass a

constant fraction of the offers to extract some information, construct a threshold based on that

information, and select the first next element in the sequence that surpasses such threshold.

2Although the problem is stated in discrete time for simplicity, its extension to continuous time is immediate.
3Hyperbolic discount rates does not share this property for example
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According to this rule, there is no incentive for an agent to not reveal her true value, because if

she arrives online in the segment at which the decision maker is not accepting offers, is irrelevant

what offer she places, but if she arrives in the complementary half-space, then by revealing her

true value she maximizes her probability of being selected4.

Nonetheless, there are situations in which the true revelation discussion is not even a problem

because agents would find no rationality to participate in the proposed scheme. When it is the

case, mechanisms are called non incentive rational. Online single-object auction with entrant fees

constitutes a good example of this sort. In those, for all buyers with an object-valuation below

the entrant fee, is irrational to participate in the auction, independently of the auction’s format

run by the seller. Notice that incentive rationality is not a necessary nor sufficient condition to

have a truthful mechanism, and actually there are many examples of truthful mechanisms which

are not incentive rational and vice-versa.

3.1.4 Endogenous Arrival Time and Revisiting

The reasoning conducted here assume, although, that agents arrive exogenously and uniformly

in time, and consequently, that cannot control the moment at which to place their one-time

offers. Nevertheless, there are plenty of applications in which agents can endogenously decide

the time at which arrive to the process. As a matter of example, consider buyers trying to get

airline tickets online, or a commercial bank attempting to buy Britain pounds in the electronic

market of a given day. In the first case, a buyer shopping online for airline tickets may choose

not to purchase them as soon as the company announces tickets are available, and rather wait

until a later date, if they hope prices will go down. In the same fashion, the commercial bank

would prefer to buy as soon as possible, if it expects an increase in the exchange rate of the day.

When agents can arrive endogenously, sellers shall form a belief about a reasonable distribution

of the arrivals in the T .

The endogenous arriving scheme can be even more complicated when there exists the possibility

of revisiting. That is, when agents can place more than one offer for the time the online

mechanism lasts. Consider a central bank selling a bond, via an online mechanism, to a fixed

number of bidders n. Assume that each bidder can place more than one offer, but that the

bank can identify each offer with the corresponding bidder. Under this scenario, the seller

should adjust the threshold defined in the optimal rule discussed in this section, to capture the

4Notice that if the secretary is not hired, she will not receive any salary, and therefore she strictly prefers to
be hired.
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strategic behavior of potential buyers. Observe that a buyer might have an incentive to under

declare her true valuation the first time she visits the seller. If the seller is in the stage of getting

a feeling of the market, then by under declaring she is contributing to bringing down the cutoff at

which the seller might deem convenient to accept an offer. On the other hand, if her offer arrives

in the “susceptible to trade” half time space, then buyer might want to shade the bank, in order

to get the bond at a lower price than her valuation. However, a buyer conducting such strategy

incurs in the risk that her immediate successor reports a value between her true valuation and

her last actual value reported, in which case, the process stops and the buyer receives a zero-

payoff. A mechanism of this sort, is clearly non-truthful, but still being incentive-rational, due

to it is optimal for all agents participate in the process, when an opportunity comes to them.

3.1.5 Unknown Number of Participants

Finally, there have been many developments in literature to extend the secretary problem to

applications in which the number of participants is unknown. An illustration, in which this

assumption is typical, comes from the plethora of mechanism designed for searching and match-

ing people online. This problem is also called the spouse problem in search theory, and shares

the same principles with the pure secretary problem, but with the difference that the seeker

does not know the measure of the potential universe which she is dealing with. Notice that as

before, the same kind of too early and too late stooping problems are present here, but with

the remarkable difference that the decision maker does not have a notion of what too early and

too much stand for. The solution proposed in literature takes the number of participants as a

random variable over which the decision maker has to hypothesize. Abdel-Hamid et al. (1982)

showed there exists an exhaustive family of Bayesian acceptable solutions for a single improper

prior distribution.

The so-called secretary problem and its different versions, are just one example of a general class

of optimal-stopping problems in dynamic environments. There, generally a planner or seller

has to decide when stop a selling mechanism in order to maximize revenue. However, such

decision rule has to take into account that buyers act strategically, possess private information,

and that many times outside options are available. These, and many other theoretical aspects

of online or dynamic mechanisms, have been studied in recent literature, stressing properties of

efficient implementation, budget constraints, learning over time, and information asymmetries.

The next chapter pretends to review (in not an exhaustive way) the recent literature that deals

with dynamic mechanisms governed by an embedded optimal-stopping rule.
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Chapter 4

Dynamic Mechanisms: Review of

Literature

The literature on dynamic mechanism design can be broadly divided into two branches: on

one side we can find authors interested in the intricancies of efficient implementation in one-

dimmension dynamic models, while on the other hand we can find works dealing with extensions

of the uncertainty space in the temporal dimmension, and how it impacts buyers and sellers’

equilibrium strategies. The first class of works are mainly focused on prove the existence of

Vickrey-Grooves-Clark mechanisms in dynamic environments, and characterize the properties

of the payment and allocation rules. In that sense, Bergemann and Valimaki (2010) constructs

a payment scheme where each player receives as his payment, her marginal contribution to the

social welfare in every conceivable continuation game. In their model, the planner calculates

the efficient allocation given agents’ reported types, and then also calculates, for each agent i,

the optimal allocation when such agent i is excluded from the mechanism. The total expected

discounted payment of each agent is set equal to the externality cost imposed on the other agents

in the model. In that environment, the social objective is simply to maximize the expected

discounted sum of the individual utilities, whose solution is by construction time-consistent.

On its part, Athey and Segal (2007) constructs an efficient, incentive compatible, dynamic mech-

anism with balanced budgets under a “private values” assumption, wehere agent’s payoff does

not depend on the other agents’ private information, and an “independent values” assumption,

in which agent’s private signals are independent of other agents’ private information, conditional

on past public decisions. The main result shows that under these two assumptions, the addi-

tional incentive constraints do not rule out the implementation of efficient decision plans using
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budget balanced transfers. The desirability of budget balances in the design of a mechanism is

well known, since in many times a planner needs to embrace a project without the possibility to

count with external funds, even in a dynamic environment. The result by Athey and Segal show

that it is possible construct mechanisms of this sort in which agents truthfully reveal their types

over time, and agree to follow the allocation and payment schemes proposed by the planner.

Another example of efficient implementation is provided by Mierendorff (2010). In a standard

framework of independent private values, where buyers are long lived and arrive randomly

over time, the author show that the efficient implementation rule in an online auction of a

single object, can be implemented by a mechanism with a simple payment rule that generalizes

the static Vickrey Auction. The payment scheme derived in the model satisfies the following

convenient properties: i) only the winner makes a payment, ii) payments are ex-post individually

rational, iii) the mechanism never transfers money to any buyer, and iv) payments are made

online (i.e. all information that is needed to determine the payment must be available at the

time of allocation). The central result of the paper is that, despite the intertemporal elments in

buyers’ private information, only one-dimmension is relevant to determine the efficient allocation.

For each type, there is a unique period in which a buyer can possibly win the object, and hence

only the valuation for this period matters for the efficient allocation rule.

Finally, Pavan et al. (2008) derives a so-called dynamic payoff formula which represents the

derivative of an agent’s expected payoff in an incentive-compatible mechanism with respect to

his private information. It provides an envelope-theorem condition summarizing local incentive

compatibility constraints. Intuitively, such formula represents the impact of an infinitesimal

change in the agent’s current type on agents’ equilibrium expected payoff. According to the

authors, this change can be decomposed into two parts, being the first the familiar effect of the

current type on agent’s expected utility, and the second the indirect effect of the current type

on the expected utility through its impact on the type distributions in each of the subsequent

periods. Necessity and sufficiency conditions on the dynamic payoff formula, of a fairly general

class of incentive compatible mechanisms, are also derived.

Other side of the literature has taken the road of relaxing the conventional one-dimmension

uncertainty in agents’ space, to include explicitly arrival and departure times as part of their

private information set. This extension brings new considerations on the strategic behavior of

buyers, as well as on the conditions that assure incentive compatibility and incentive rationality.

Moreover, it permits to tackle new interesting issues such as incorporating learning capabilities

by the seller and or buyers.
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In this stream, Pai and Vohra (2008) consider a dynamic auction problem in which a seller

endowed with C units of an object faces potential buyers with unit demand who arrive and

depart over T periods. Buyers’ type-space is three-dimmensional, composed by their arrival and

departure time, as well as by their private valuation over the object. In such setting, authors

derive the revenue maximizing Bayesian incentive compatible selling mechanism. The approach

followed is an extension of Myerson (1981) paper on optimal auction design in static mechanisms,

however the results found do not follow immediately, since now incentive compatibility shall to be

verified for all the directions in the type-space. In a similar fashion, Mierendorff (2010) explores

a model to sale an object in a dynamic environment where agents have the same type-space

as before, but where arrival times are public information for the seller, and agents’ degree of

patience is given by exogenous deadline times. When agents participate in the mechanism, they

are prompted by the seller to declare their private valuation as well as their deadlines. The author

first explore the optimal mechanism neglecting the incentive constraint for the deadline, and then

analyze conditions that could make the relaxed solution suboptimal. That is, situations that

lead violation to the neglected incentive constraint. Unlike Mierendorff, Galiien (2005) considers

a model with only patient buyers that have to report arrival times and private valuations. In

an infinite horizon model it is shown that under certain conditions on the inter arrival time

distribution, the optimal mechanism is the same as with impatient or non strategic buyers.

In general, these models assume independence between the arrival time and the valuation of

the buyers, nevertheless it might be the case they are correlated, which changes the conditions

on the payment scheme that assures incentive compatibility. Indeed, the efficient allocation

rule cannot always be implemented following the four criteria pointed by Mierendorff (2009), if

independence is not satisfied. Moreover, since buyer’s can only delay but not bringing forward

their arrivals, the mechanism could pay a subsidy in order to induce agents report earlier their

arrivals, with the purpose to take advantage of the externality in information. Notice, though

that the subsidy shall be paid to all buyer’s and not only to the winner, which assumes the seller

has external resources to do so.

The present paper, like Mierendorff (2010), assumes arrival times are observable by the seller,

but instead of considering exogenous deadlines, allow buyers to optimally select their departure

time under the presence of external trading opportunities. Incentive compatibility and imple-

mentation issues are explored in such environment, where additionally time is partitioned in

disjoint market windows.
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Chapter 5

An optimal stopping dynamic

mechanism under market windows

and endogenous departure times

A risk-neutral, revenue-maximizing seller endowed with an indivisible, storable object, faces a

continuous stream of self-interested, risk-neutral potential buyers, who arrive in an interval T ≡
[0, T ] (which corresponds to the useful-life of the object). As soon as the seller is endowed with

the object, she advertises a sale opportunity that opens the market immediately. Nonetheless,

trading opportunities are constrained by the legal and institutional framework of the economy,

that defines official periods at which exchange can take place. The set of these periods is denoted

by W and each of its elements are known as market windows. Consequently, W = W ∩ T is

the set of authorized periods at which a deal over the object can occur in the model. Market

windows are assumed to be truncated and symmetric in T , and without loss of generality, the

earliest window starts at t = 01.

The set of agents is denoted by I = {1, 2, · · · I, I + 1}, with the convention that i ≤ I represents

a bidder and I+1 represents the seller. Agents’ arrivals in each window are described by the

stochastic process {N (t), t ∈ wk}, where N (t) is a random variable representing the number of

arrivals up to time t ∈ wk. If t ∈ (tk, tk+1), N (t) = 0 for all k. That is, inter-window periods are

considered dead times in which no potential buyer arrives to place a bid. Notice however, that in

a model with commitment on the side of the seller, it might be rational for some potential buyers

1According to this description, for all uniform partition {t0 = 0 < t1 < · · · < tn = T}, W := {wj : wj+1 =
[t2j , t2j+1], j = 0, 1, · · · (n− 1)/2}. Relabeling bounds, we will refer of a window wk as the interval [tk, tk]
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to arrive in dead times to arrange an option for buying in the next market window. Nonetheless,

such cases are rule out in the present model, and instead, bids, payments and allocations only

occur within market windows.

Seller’s uncertainty about the value estimate of bidder i can be described by a continuous

probability distribution over a finite interval. In that sense, before getting into a market window,

each of the I potential buyers privately and independently learns her actual valuation2 from the

compact support V ≡ [v, v] ∈ R+, where −∞ < v < v < +∞3, according with a continuous

probability density function fwk
(·), which satisfies fwk

(v) > 0 for all v ∈ V . As usual, Fwk
(·),

will denote the cumulative distribution function corresponding to fwk
(·).

Actual valuation of each buyer i might depend on the history of past valuations. Specifically,

it could be assumed that vi(wk) is drawn from a history-dependent probability distribution.

Fwk
(·|vwk−1

i ) on V , where v
wk−1

i represents buyer i’s history of valuations up to window wk−1.

Generally, Fwk
is an element of F ≡ {F : B → [0, 1]}, the set of all possible measures on V .

Nonetheless, in order to maintain tractability independence of distribution along market windows

is also assumed.

Moreover, following Myerson (1981) the next regularity condition is imposed.

Assumption 1. For all wk ∈ W, C(v) = v − 1−Fwk
(v)

fwk
(v) is strictly increasing in v.

C(·) is called the virtual valuation of a buyer given her actual valuation v, and its well defined

in virtue of the full support assumption of fwk
. As we will see later, this condition assures that

for every pair of bidders i and j, such that vi > vj , bidder i will have a higher probability to get

the object.

Along with her valuation vi(wk), and arrival time ai(wk), a type of an agent is completed by

her claimed departure time of the current market window, di(wk), which stands for the time up

to which the buyer is willing to keep her offer active in the current window. For convenience,

independence between arrival times and valuations is assumed for all buyers along all windows.

Hence, agent’s multidimensional full type within market window wk corresponds to:

Θi(wk) := {θi(wk) ≡ (ai(wk), di(wk), vi(wk)) ∈ [tk, tk)× (tk, tk]× V : ai(wk) < di(wk)} (5.1)

Its natural restriction to time t, given by Θt
i(wk), additionally requires that ai(wk) < t.

2Those valuations might change along market windows to reflect the fact that preferences toward the object
can be affected by random events during its useful life, or might be revised on the light of new information
conveyed by the behavior of competitors in previous windows. In other words, and contrary to other dynamic
mechanisms as Said (2010), buyers’ valuations are not persistent.

3The space of valuations V , along with the Borel sigma-algebra B ∈ R conform a measurable space.
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Many papers such as Gallien (2006), Pai and Vohra (2008), and Gershkov and Moldovanu (2010)

consider buyers’ arrival times as private information. However, for the sake to isolate the in-

tricancies related with the report of departure times, this paper assumes arrivals are always

observable to the seller. A similar characterization of agents’ types is given in Meriendorff

(2010). However, in his model deadlines are given exogenously (as a reflection of the hetero-

geneity in buyer’s degree of patience), whereas in the present model agents have to choose an

optimal departure time report at their arrival. In fact, all potential buyers are assumed to be

patient/strategic, whose actual departure time of the mechanism depends on the availability of

trading opportunities in parallel markets, as in Rochet and Stole (2002).

More precisely, once an agent i enter into a market window, she receives -independently and

exclusively- a private signal about a bilateral trading opportunity4 over a substitute object

for which buyer i assigns a valuation ṽi(wk): a realization from the conditional distribution

Fwk
(·|ṽi < vi). The time at which the signal arrives in any window is distributed according to

Gwk
(·) ≡ G(·), and correspondent continuous density g(·), with the property that g(t) > 0 for

all t ∈ wk5. Moreover, in the bilateral bargaining process the buyer almost extracts the whole

surplus, in the sense that the negotiated price is fixed at ε > 0, for ε sufficiently small. When

the signal informs about the alternative market, buyers have to make an instantaneous decision

of leaving the actual market window, or stay there up to her initially claimed departure time.

Nonetheless, once the possibility of leaving the actual market is rejected, it cannot be recalled.

To complete the environment, we assume that if buyer i reports a departure time d̂i(wk), but

effectively leaves at di(wk) < d̂i(wk), and the seller happens to allocate her the object at τwk
∈

(di(wk), d̂i(wk)], then agent i does not get the object but has to pay a non-commitment cost,

which is equal to the elapsed time between allocation and her actual departure time, multiplied

by a penalty fee of λ > 0. Nonetheless, this penalty fee is only applicable to the winner,

though it might be the case that some of the non-allocated buyers have departed earlier as

well6. Therefore, unlike conventional mechanisms, collection of fines is another potential source

of revenue for the seller.

Buyers are assumed to have unit demand in every window, so that if an agent walks away from

the institutionalized market at some wk, it does not preclude her to come back to the market

at wk+1 to bid for the object if it has not been allocated yet. This feature, along with the fact

4The appearance of such opportunities are natural under asymmetries in the information setting, or when
agents decide to invest in order to search for better opportunities in less known markets.

5As usual in Bayesian games, Θ, Fwk , fwk , Gwk and gwk are public information.
6This payment scheme is supported by the fact that verify the true state of potential buyers is costly
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that agents only discover the bargaining bilateral trading opportunity when they have already

arrived to the market, let the stochastic process N (·), represent the stream of agents at any

window. For tractability, buyers are allowed to place just one bid in any market window, which

has to be reported along with her departure time at their arrival -those cannot be updated once

revealed. It is important to remark that seller cannot see whether a potential buyer have walked

away before her reported departure time, and only can verify this condition if decides to allocate

her the object before such time.

Unlike other online mechanisms where if an offer is not attended immediately then can never

be considered again7, here the possibility of recalling is considered -in the spirit of Zuckerman

(1986). However, it is qualified to the current active window, that is, an allocation at time τwk
∈

wk for any wk, can be and only can be mapped to any agent i with arrival time ai(wk) < τwk
.

With respect to seller’s valuation, we suppose at any time she attaches a v0 value to the object

at hand, which is the utility she can derive if decides to consume the good (or execute it in the

case of a financial asset), instead of allocating it. Observe that if the seller conserves the object

after wk window’s closing, then she necessarily has to keep it until wk+1 window’s opening if

she wants to allocate it to someone else. Once the seller allocates or consumes the object, the

market is closed and resale is not allowed. Thus, the seller only can allocate the object within a

market window, but can consume it at any time t ∈ [0, T ]. Like potential buyers, seller discounts

time using the factor δ ∈ (0, 1).

From seller’s perspective, we can impose a partial order � on Θ(wk) for all wk -as in Pai and

Vohra (2008)- such that

θi(wk) � θj(wk) ≡ (ai(wk) ≤ aj(wk)) ∧ (di(wk) ≥ dj(wk)) ∧ (vi(wk) ≥ vj(wk)) (5.2)

Intuitively, a type will be weakly preferred to another if the buyer to which it is referred arrives

earlier, reports a later departure time, and has a weakly higher valuation. Suppose we have

types θi(wk) and θj(wk) such that ai(wk) = aj(wk), di(wk) < dj(wk), and vi(wk) > vj(wk).

Then, we can interpret the ex ante seller’s “marginal rate of substitution” between valuations

and departure times, as the tradeoff of having the possibility to allocate the object to the buyer

with higher valuation vi(wk), up to her claimed departure time di(wk), versus the option of

extending the possible optimal allocation up to dj(wk). In this case, seller can expect the arrival

of a buyer with type θl(wk), such that al(wk) ∈ (di(wk), dj(wk)), and vl(wk) > vj(wk). Clearly,

expected value vl(wk) should be high enough to compensate for the loss of value in time.

7Think for example in the secretary problem and its many extensions, as presented in Babaioff et al. (2006).
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Agents’ utility is quasi-linear, which implies that if a buyer i arrives at time ai(wk), gets the

object at τwk
∈ [ai(wk), tk], and pays pi(wk), her utility is given by e−δτwk (vi(wk) − pi(wk)).

Correspondingly, the utility of the seller would be eδτwk (pi(wk) − v0). Notice the attention

is restricted to payment schemes where full transfer from buyers occur instantaneously upon

the allocation of the object8. Furthermore, no budget constraint is imposed to potential buyers,

meaning that at any time they have enough resources to pay for their bids, and so never incurred

in default with the seller.

5.1 Allocation structure

Since recall may be utilized by the optimal policy, the state of the game can be summarized

by the history of types reported by agents throughout time. Borrowing the general setting of

Gershkov et al. (2010), let

Htwk
=

I∏
N (t)=0

Θt(wk)
N (t)

(5.3)

be the set of all possible histories, htwk
, at time t within the active market window wk. Here, we

set Θt
i(wk) = Θt(wk) since buyers are symmetric.

For convenience in notation, let htwk
= (hti(wk), h

t
−i(wk)), where hti(wk) denotes the reported type

of agent i up to time t in window wk (with the convention it is the empty set if agent i has not

arrived at time t9.); and ht−i(wk) denotes the derived history of types up to time t, reported by

potential buyers other than i. In addition, define Stwk
:= {stwk

: stwk
= (htwk

, ztwk
) ∈ Htwk

×I∪{0}},
where ztwk

indicates if the object is still available at time t within window wk, z
t
wk

= 0, or has

already been allocated to some agent i, ztwk
= i.

From the latter, we can build Hwk
, the space of histories in any active window wk, as the

continuous product of Htwk
in [tk, tk]. To conform its correspondent measure space we appeal

to Kolmogorov’s extension theorem10 to let Fwk
be the σ-algebra generated by Hwk

, µwk
its

induced measure, and {Fwk,t}t≥tk its associated filtration. As above we set hwk
∈ Hwk

as

(hi(wk), h−i(wk)). With these fundamentals, the time at which seller stops the market is defined

8Nevertheless, differences in allocation and payment times are customary in markets where a deposit in advance
is necessary to meet the institutional requirements that allow the buyer to take possession of the object. In fact,
any market in which a guarantee deposit is necessary, like electromagnetic space auctions or public project tenders,
is classified in this category.

9If agent i arrives to the mechanism, then given that buyers can place only one bid, clearly ht
wk

= θti(wk).
10For a detailed explanation of the theorem as well as the description of the two consistency conditions embedded

see Oksendal (2002).
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as following:

Definition 15. A stopping time with respect to {Fwk,t}t≥tk , in the current window wk, is defined

as a function τwk
: Hwk

→ [tk,+∞), where {hwk
∈ Hwk

; τwk
(hwk

) ≤ t ∈ Fwk,t, for all t ≥ tk}.

Clearly, the optimal stopping time within window wk can be also defined as τwk
≡ inf{t ∈ [tk, tk] :

ztwk
> 0}, in virtue of our notation. Denote τwk

(θi(wk), h−i(wk)) the optimal stopping time

within window wk if agent i reports a type of θi(wk), while the rest I−1 buyers conform a history

h−i(wk). If the object is not allocated within the current window, then we set τ(hwk
) = ∞.

Consequently, in all subsequent windows to allocation or unilateral closing, stopping time is

equalized to infinity.

The subset of histories h−i(wk) in which the agent i gets the object, when reporting a type

θi(wk), is denoted by H−i(θi(wk)), while Hc−i(θi(wk)) denotes its complement. Furthermore, to

keep track of the relevant histories for the mechanism, let A(stwk
) ∈ I be the set of active buyers

in state stwk
, or in other words, the set of agents that have arrived and have not departed from

the mechanism at time t in the current window wk (i.e. those whose initially-reported departure

time has been not surpassed, and have not walked away at time t). Naturally, no agent is active

if the market is closed.

Observe that unlike standard stopping-time problems, even if histories coincide in arrivals and

reported valuations, the optimal stopping time might depend on the set of active buyers in any

window.

5.2 Direct mechanisms

Under this environment, seller aims to design a mechanism whose equilibrium maximizes seller’s

expected revenue. Nonetheless, the degree of generality embedded in the environment stated

above is a major difficulty to find a solution to its correspondent optimality problem, because

it is necessary to consider any class of mechanism. However, as it is typical in such studies,

this difficulty is resolved by appealing to the Revelation principle, a result firstly introduced by

Myerson (1981). According to this outcome, it is just necessary to qualify the search to the class

of mechanisms in which agents are directly asked to report their types, since any implementable

rule associated with an arbitrary strategy space can be supported by the equilibrium solution

induced by its correspondent direct mechanism.

An allocation rule is a function ytwk
: Stwk

→ [0, 1]N (t) that defines the winning probability of

active buyers in state stwk
-given ztwk

= 0. Since there is only one object available in the market
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and resale is not allowed, an allocation rule must satisfy the following feasibility constraint

∀t, wk, stwk
:
∑

i∈A(stwk
)

yi(s
t
wk

) ≤ 1 (FC)

Likewise, a general payment rule is a function ptwk
: Stwk

→ RN (t) that sets a price to be collected

at any time the market is open. Negative prices stand for transfers from the seller to buyers.

We call an allocation rule discrete, if it allocates the object exclusively upon arrival. In other

words, if τwk
< ∞, then τwk

= ai(wk) for some i. However, since recall is allowed and buyers

are patient, the last expression does not mean that the object shall be allocated to the buyer

with contemporary arrival time to the optimal stopping rule; but instead to an active agent j,

with aj(wk) < ai(wk).

Therefore, in this environment a direct mechanism takes any possible history in the game for

all market windows, and decides whom to assign the object (if it has not assigned before), and

what price charges for it. The following definition formalizes this notion.

Definition 16. A direct revelation mechanism is a sequence of allocation and a payment policies

Γ ≡ {(ywk
, pwk

)}wk∈W such that: (i) (ytwk
, ptwk

) is Fwk,t-measurable, for all wk, t ∈ wk; (ii) ytwk

satisfy the feasibility constraint (FC); and (iii) yi(s
t
wk

) = 0, pi(s
t
wk

) = 0 for all i /∈ A(stwk
).

Moreover, the expected winning probability of a buyer who arrives to the mechanism at time

ai(wk), and reports a type θ′i(wk) = (ai(wk), d
′
i(wk), v

′
i(wk)) -given that the rest of the potential

buyers report truthfully their types- corresponds to

π(θ′i(wk)) = µwk
|ai(wk){H−i(θ′i(wk))} (5.2.5)

where µwk
|ai(wk) is the conditional measure on Hwk

upon arrival of agent i.

5.3 Buyers’ optimal departure time report

Recall that in the present environment as soon as the potential buyers get into the market,

they learn their valuations and instantaneously have to declare a type11. Once buyers are on

the market, they are eligible to receive a signal about a parallel bilateral trading opportunity,

according to some distribution G(·). In such bilateral bargaining, a potential buyer can obtain

11Such type includes a report a of a departure time that cannot be modified once it is claimed.
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a surplus of ṽi − ε (where ṽi is a realization from Fwk
(·|vi < ṽi) and ε → 0), if she decides to

take the option of walking away. However, there is a cost if the mechanism allocates the object

to a buyer but it happened she has departed earlier -the cost being proportional to the time

elapsed between the actual departure time and the reported one. The analysis of the tradeoff in

reporting a departure time is as follows. A higher reported time di(wk) increases the probability

to incur in a non-commitment cost, since the probability of the event that the signal arrives

in [ai(wk), di(wk)], and the individual effectively walks away, increases with di(wk). On the

other hand, since the optimal policy allows recalling, when the agent reports she is willing to

sustain the offer for longer time, then she increases the probability of being allocated within the

institutionalized market. Hence, when declaring a departure time agents seek to maximize the

ex-ante value to participate in the market window, but considering the possibility of walking

away at any time12.

d̃i = arg sup
di∈Ci

EH−i(θi)|vi
[∫ τwk

ai

e−δtφ(vi)−
(
e−δτwk [λ(di − t) + (vi − pi)]

)
g(t)dt

]
π(θi) (5.3.6)

+

∫ tk

ai

e−δtφ(vi)g(t)dt[1− π(θi)]

Letting Ci := [ai, tk], and φ(vi) := E[ṽi − ε|ṽi < vi], equation (5.3.6) states the correspondent

optimization problem for the agent.

The first term in (5.3.6) accounts for the expected utility of the buyer when she walks away

earlier than the allocation time13. Her net gain is determined by the discounted expected value

of ṽi − ε, given the conditional density of the signal, minus the potential cost in which the

buyer incurs for departing before the time she claimed. Such cost includes not only the so-called

non-commitment portion, but also the utility lost if the object would have been allocated to

her. Observe this cost is discounted using the allocation (rather than the current) time, since

it is until such time when the seller discovers the potential buyer has effectively failed in his

commitment to buy. Finally, the second term summarizes the utility the agent can get in the

bilateral trading, given she is not allocated in the institutionalized market.

The departure time claimed affects the stopping rule in the optimal allocation τwk
(θi, h−i), as

well as the measures over the subsets at which the agent is and is not allocated. In fact, ceteris

12For convenience, the dependence of variables to the actual window wk will be omitted henceforth in the
absence of ambiguity.

13Recall that if the object is allocated within the current window τ(hwk ) < tk, otherwise it is set equal to
infinity.
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paribus a later departure time increases the measure of H−i(θi), and consequently decreases

the measure of its complement Hc−i(θi). Notice that even agents are homogeneous, optimal

departure times are determined by the correspondent realization of individual valuations, as

well as by the arrival times.

5.4 Buyers’ instantaneous decision of walking away and expected

departure time

Despite the fact that buyers have to ex ante declare a departure time, they should decide whether

leaving the market or not when have the opportunity to do so. That is, when an on-market

buyer with type θsi effectively receives her signal at arbitrary time t < s < di over a substitute

object with valuation ṽ, she has to decide if walking away at that moment, or dismisses that

opportunity to conserve the possibility of being allocated in the institutionalized market. So, if

κsi := κsi (θi, ṽi) denotes the probability that a buyer i walks away when receiving the signal at

time s, given the valuation of the outside opportunity is ṽ, then

κsi (θi, ṽ) =

{
1 if e−δs(ṽi − ε) > EH−i(θi)[e

−δdi(vi − pi + λ(di − t))]π(θi)

0 otherwise
(5.4.7)

In other words, the potential buyer would take the bilateral opportunity with certainty if the

realized discounted utility surpasses the right hand side in the latter expression, which in turn is

the opportunity cost conformed by the non commitment fine and the surplus derived if she would

have won the object in the institutionalized market. Therefore, the unconditional probability of

walking away at an arbitrary time t is given by, ρti = EFwk
(·|ṽ<v)[κ(θi, ṽ)].

According to the latter, the probability αti := αti(θi) that a buyer actually remains in the

mechanism at time t, given she has arrived, is the union of two disjoint events: the event that

the signal have not arrived at time t, and the event that the signal have arrived but the agent

have decided to dismiss that opportunity to continue in the institutionalized market. Using

the notation introduced before, αti =
∫ tk
t g(s)ds +

∫ t
ai
g(s)(1 − ρsi )ds. From this structure, it is

straightforward to build buyers’ expected departure time at their arrival as

Di ≡
∫ di

ai

tρtig(t)dt+ αdii di (5.4.8)

The first term in (5.4.8) accounts for the expected time the buyer leaves if attends the signal
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before the optimal claimed time, while the second one is precisely the probability that she

remains in the mechanism up to her initially-reported time.

Proposition 6. For all h−i ∈ H−i, define the operator χ : Ci → Ci such that (χd̃i)(ai, vi) is

given by the right hand side of (5.3.6). Then, χ has a fixed point d̂i ∈ Ci.

Proof. Fix h−i ∈ H−i. Given that seller’s preference over types is described by (5.2), for all

ordered pairs (ai, vi) of an arrival time and a valuation, seller would prefer higher departure

times. Now consider the following two cases.

Case 1. If there is no di ∈ [ai, tk] that prompts the seller to allocate the object to buyer i,

then the measure of H−i(θi) is zero, and consequently her expected net gain would correspond

to
∫ tk
ai
e−δtφ(vi)g(t)dt. Here, the solution of (5.3.6) is the whole interval [ai, tk]. Without loss of

generality, buyer reports di = ai and becomes an impatient buyer.

Case 2. Suppose on the contrary that there exists di ∈ [ai, tk] such that if reported by buyer

i -in conjunction with (ai, vi)- the seller would allot her the object. In other words, suppose

τwk
(θi, h−i) < tk and yi(s

τwk
wk ) = 1. Moreover, if we let di denote the minimum di that satisfies

such condition, then

di = inf{di : di > dk such that vk > vj , for all j ∈ A(saiwk
)} (5.4.9)

In (5.4.9), di represents the minimum time that makes agent i the buyer with the highest

valuation in the mechanism, based exclusively on the information collected at his arrival time

ai. Clearly, if d′i < di then there exists at least another agent with higher valuation and therefore

agent will not be allocated. On the other hand, all d′is with d′i > di have higher non-commitment

costs, since the signal is distributed according to a full support distribution G(·); and therefore

they are inefficient. Notice that if there are new arrivals in period (ai, di) there are three

interesting scenarios. The first one is the arrival of at least one buyer with higher valuation

than vi and later departure time than di, in which case buyer i is not allocated. The second

one, refers to the situation where all buyers that arrive with higher valuation than vi declares

an earlier departure time. Here, buyer i will have a positive probability of being allotted if seller

delays allocation time beyond the later departure time of those buyers with higher valuations

than buyer i. However, there might be the case, that buyers with lower valuations arrive and

declare later departure times than di to have positive probability of being allotted. In this case,

agents have to compute the minimum departure time di such that
∫ di
ai e

−δtφ(vi)g(t)dt equalizes∫ di
ai e

−δdi [λ(di− t)+(vi−pi)]g(t)dt. Therefore, in such cases where di > ai, the optimal reported
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time for a given history h−i ∈ H is given by d̂i = max{di, di}. �

On the light of proposition 1, the optimal departure time reported by buyer i at their arrival,

can be computed as the expected solutions of (5.3.6), over all possible histories h−i ∈ H−i, given

a valuation vi. That is,

d∗i = EH|vi [d̂i] (5.4.10)

Corollary 1. For all buyer i in any window wk, the optimal departure time report, d∗i (wk) is

increasing in the realization of buyer’s valuation vi(wk).

Proof. See the appendix �

5.4.1 Incentive compatibility and incentive rationality

Notice that in virtue of proposition 1, the space of types for all agents consists of just one

dimension, since their optimal departure time depends on vi, and agents will not depart from

its report. In fact, di and vi are correlated (see proposition 2), and seller can observe if a buyer

i is misrepresenting his departure time based on the report of his valuation.

To arise to incentive compatibility constraints of the mechanism, we will first analyze the amount

a buyer expects to pay when entering to the mechanism if reports a type θ
′
i = (ai, v

′
i, d
∗
i (v

′
i))

14.

Recall that only active agents are subject of charge and transfers are produce only at allocation

time. In that sense the expected payment is given by,

Ψ(θ
′
i) = EH−i(θ

′
i)

[∫ d′i

ai

e−δd
′
i [α

d
′
i
i pi(s

d
′
i
wk) + (1− αd

′
i
i )λ(d

′
i − t)]dt

]
π(θ′i) (5.4.11)

+EHc
−i(θ

′
i)

[
e−δτwkpi(s

τwk
wk )

]
(1− π(θ′i))

The first expectation corresponds to the payment buyer faces when he is allocated, given he

reports a type θ
′
i (i.e. the expectation is taken over H−i(θ

′
i) Here, the payment is a convex

combination of the payment charged in the institutionalized market and the fine agent has to

pay if leaves earlier. Notice that limits of integration reflects the fact that if a buyers is allotted,

then it is at his deadline time. The second expectation is taken over subset of histories at

which the buyer is not allocated, which is equal to zero in all only-winners-pay mechanisms.

Henceforth, we will consider only this kind of payment schemes.

14For easiness of notation we will abbreviate θ
′
i as (ai, v

′
i , d

′
i).
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Using (5.2.5) and (5.4.11), the expected utility of participating in the mechanism corresponds

to,

U(θ′i|θi) = EH−i(θ
′
i)

[
e−δd

′
ivi −Ψ(θ′i)

]
π(θ

′
i) (5.4.12)

Expected utility from truth-telling is simply written as U(θi).

Definition 17. A direct mechanism Γ is Bayesian incentive compatible and incentive rational,

if for all i ∈ I, wk ∈ W, and θi(wk), θ
′
i(wk) ∈ Θi(wk) it holds that:

U(θi(wk)) ≥ U(θ′i(wk)|θi(wk)) (IC)

U(θi(wk)) ≥ 0 (IR)

Proposition 7. Let Γ a direct mechanism that allocates only at the deadline. Then Γ is incentive

compatible if and only if for all i ∈ I, vi(wk), v′i(wk) ∈ V , ai(wk) ∈ [tk, tk], and d(wk) ∈
[ai(wk), tk]:

vi(wk) > v′(wk)⇒ π(θi(wk)) ≥ π(θ′i(wk)) (IC.1)

U((ai(wk), di(vi(wk)), vi(wk)) = U((ai(wk), d(v), v)) +

∫ vi

v
e−δdiπ((ai(wk), s, di(s)))ds (IC.2)

U((ai(wk), v, d(v))) ≥ 0 (IC.3)

Proof. Clearly, (IR) implies (IC.3). Moreover, since the mechanism is incentive rational and

incentive compatible, all agents agree to participate and will reveal their true types. Since seller

assigns the object to the agent with the highest valuation, a higher valuation implies a higher

probability of being allotted. In other words, π(·) is monotone.

Now, notice that

U(θ′i|θi) = EH−i(θ′i)
)[e−δd

′
ivi −Ψ(θ′i)]π(θ′i) (5.4.18)

= EH−i(θ′i)
)[e−δd

′
i(v′i + vi − v′i)−Ψ(θ′i)]π(θ′i)

= EH−i(θ′i)
)[e−δd

′
iv′i −Ψ(θ′i)]π(θ′i) + e−δd

′
i(vi − v′i)π(θ′i)

= U(θ′i) + e−δd
′
i(vi − v′i)π(θ′i)
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Since incentive compatibility implies that U(θi) ≥ U(θ′i|θi), then,

U(θi) ≥ U(θ′i) + e−δd
′
i(vi − v′i)π(θ′i) (5.4.19)

Using (5.4.19) twice, and switching the roles of θi and θ′i, we get

e−δd
′
i(vi − v′i)π(θ′i) ≤ U(θi)− U(θ′i) ≤ e−δdi(vi − v′i)π(θi)

Letting γ = (vi − v′i), the latter inequality can be rewritten for any γ > 0 in the following way,

e−δdi(vi−γ)γπ((ai, vi−γ, di(vi−γ))) ≤ U((ai, vi, di))−U((ai, vi−γ, di(vi−γ))) ≤ e−δdiγπ((ai, vi, di))

In virtue of (IC.2), π(·) is increasing, then integrable, and therefore

U((ai, vi, di) = U((ai, v, d(v))) +

∫ v

v
e−δdiπ((ai, s, di(s)))ds

For the only if part, notice that (IC.3) plus the fact that π(·) is nonnegative, implies (IC). Now,

we will show that (5.4.19) follows from (IC.1) and (IC.2).

U((ai, vi, di)) = U((ai, v
′
i, d
′
i)) +

∫ vi

v′i

(e−δdi − e−δd′i)π((ai), s, di(s))ds

≥ U((ai, v
′
i, d
′
i)) + (e−δdi − e−δd′i)(vi − v′i)π((ai, v

′
i, d
′
i))

�

5.4.2 Seller’s optimality problem

To simplify notation, let ι represent the winner agent in the optimal allocation rule. In other

words, ι is such that y
τwk
ι (stwk

) = 1. Hence, the expected value of the seller at time t, if allocates

the object in the mechanism -given a state stwk
- corresponds to

V (stwk
|ztwk

= 0) := ESwk
|stwk

[Φ(swk
|ztwk

) = 0] + ESwk+1
[V (swk+1

|ztkwk
= 0)] (5.4.20)
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where

Φ(swk
|ztwk

= 0) := e−δτwk

(
α
τwk
ι (pι(s

τwk
wk )− v0) + (1− ατwk

ι )

[∫ τwk

ai

λ(dι − t)g(t)ρtιdt+ V (stwk
)

])
(5.4.21)

The latter expression is the union of two terms. The first one corresponds to seller’s expected

utility if she allocates the object in the active window wk given a state stwk
(5.4.21), while the

second accounts for the continuation value at the beginning of the next window. Specifically,

if the seller decides to allocate the object in an arbitrary window wk, the expected gain is

a linear combination of two terms. The first one corresponds to the prices charged to the

winning agent, minus seller’s reservation value, weighted by the probability αtι that the trade

is effectively realized (recall that payments are collected upon allocation). Likewise, the second

term corresponds to the fee collected by the seller if the intended-to-being-allocated agent fails

to commit with her ex ante declared time, plus the continuation value of the seller in the

current window (conditioned on the fact that agent ι is unactive). Such event weighted by its

correspondent probability (1− αtι).
Nonetheless, recall that seller can terminate the market at any time to consume the object and

get the discounted reservation value, instead to wait for allocating it. Hence, seller will keep

market open only if the expected continuation value exceeds her current discounted reservation

value (which acts as a lower bound of such valuation).

Therefore, the overall seller’s expected values is given by

V(stwk
|ztwk

= 0) := max{V (stwk
|ztwk

= 0), e−δtv0} (5.4.22)

The seller problem consists to choose a direct mechanism Γ that maximizes (5.4.22), given (IC)

and (IR).

Proposition 8. In no optimal mechanism seller terminates the market unilaterally in any dead

time.

Proof. Since no buyer arrives in dead times and no call options are available in the market

V (stwk
) = V (stkwk

) for all t ∈ (tk, tk). If the seller terminates the market at some t ∈ (tk, tk+1),

it implies that e−δtv0 > V (stkwk
), but given time is discounted, etkv0 > e−δtv0 > V (stkwk

), which

directly implies etkv0 > V (stkwk
). That is, that seller should close the market at the end of

window wk. �

In a nutshell, if the seller decides to terminate the market to consume or execute the good after
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closing of window wk, there is no reason to wait later than tk -the ending bound of the window,

given time is discounted. Moreover, if the market is not closed by the seller at time tk, then she

would wait until first buyer arrival in the next window (wk+1) to start making a decision.

Corollary 2. Given a state swk
, in window wk, such that ztkwk

= 0 the mechanism arrives to the

next window if and only if Φ(swk
|ztkwk

= 0) < ESwk+1
[V (swk+1

|ztkwk
= 0)] and V (stkwk

|ztkwk
= 0) >

e−δtkv0.

Proof. It follows directly from (5.4.20) and proposition 4. �

Given value is decreasing in time, the expected gain is decreasing along windows, meaning the

subset of realizations that would stop the market within the current window is increasing along

time. It turns out then, that if seller follow a threshold rule -stopping any time the maximum

valuation surpasses a bound, then such threshold would be also decreasing with respect to the

market window (i.e. buyers become less patient as time goes by).

5.4.3 Implementation of optimal solution

According to Myerson (1981), assumption 1 guarantees that the monotonicity condition (IC.1)

is slack at the optimal policy, which means that the allocation rule implemented will correspond

to a relaxed solution (see Mierendorff (2010)). Recall that Cwk
(vi) corresponds to buyer i’s

virtual valuation. Now define, Ctwk
(vi) = e−δtαtiC

t
wk

(vi) as the expected virtual valuation for

buyer i at any time t. Then, for a given state stwk
let mt

wk
= maxi∈A(stwk

)C
t
wk

(vi) be the

maximal expected virtual valuation among the active buyers in such state. The optimal solution

allocates the object to a buyer i ∈ argmaxi∈A(stwk
)C

t
wk

(vi) if the expected virtual valuation of

such buyer surpasses the continuation value of reteining the object for the rest of the market

window (and for future windows if the object is not allocated in the present window). Formally

if Ctwk
> E[V (stwk

)|ztwk
= 0]. In other words, given the object has not been allotted at his arrival

and given a history H−i, buyer i (with type θi) will be allocated within window wk if there exists

t∗ ∈ [ai, d
∗
i ] such that

mt
wk
< EHwk

|θi [V (stwk
)|ztwk

= 0] for all t ∈ [ai, t
∗] (5.4.23)

and

Ct
∗
wk

(vi) = max{EHwk
|θi [V (st

∗
wk

)|zt∗wk
= 0],mt∗

wk
} (5.4.24)
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Equation (5.4.24) says that buyer i’s virtual valuation is sufficiently high to induce the seller

to allocate him the object at t∗, while (5.4.23) states, precisely, the condition that assures the

object is available at such time.

Let ξ
d∗i
ai (H−i) define a virtual valuation threshold, given a history H−i, such that if Ctwk

(vi) >

ξ
d∗i
ai (H−i), the buyer is allotted, but not otherwise. Thus,

ξ
d∗i
ai (H−i) = max{`d

∗
i
ai , max

j∈A(st∗wk
) j 6=i
{EHwk

|θi [V (st
∗
wk

)|zt∗wk
= 0], Ct

∗
wk

(vj)}} (5.4.25)

where `
d∗i
ai = inf{x > 0|mt

wk
< EHwk

|θi=(ai,Ct−1 (x),d∗i )
[V (stwk

)|ztwk
= 0]} for all t ∈ [ai, t

∗].

Hence, ξ
d∗i
ai (H−i) is the minimum valuation buyer i has to report to assure the mechanism will

arrive at t∗, and to assure he will win at that time. Notice that if it is the case buyer i has the

maximum valuation at time t∗ he only needs to report a valuation as big as the second higher

bidder (as in the static Vickrey auction).

Theorem 2. Ignoring ties, the optimal solution for the maximization problem of the seller is

given by

yi(s
t
wk

) =

{
1 if t = t∗ and Ctwk

> ξ
d∗i
ai (H−i) for all t ∈ [ai, t

∗]

0 otherwise
(5.4.26)

The payment’s rule that supports this allocation pattern as an optimal solution corresponds to

pi(s
t
wk

) =

{
Ct
−1

wk
(ξ
d∗i
ai (H−i)) if ztwk

= i

0 otherwise
(5.4.27)

Proof. The proof follows straightforward. First, with the payment rule described above, payment

of a losing buyer is zero, and the winner pays the lowest valuation at which he is able to obtain

the object, given a history of reports by the remaining I − 1 competitors. Thus, truth-telling

is a weakly dominant strategy if buyers follow the optimal report of the deadlines. Hence, the

mechanism is that who gives seller the maximum revenue and respects incentive compatibility.

�
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Chapter 6

Application to European Football

Transfer Market

The analysis of football markets in Europe has not received the same attention of its counterparts

in United States (e.g. american football, baseball, basketball and (ice) hockey). Nonetheless,

recently the interest in studying the nature of such market has increased dramatically, spurt in

part by the availability of information and the liberalization of labor mobility rigidities. The

reasons of why such exploration is a nascent field, correspond mainly to

i) Until recently, individual player salaries were kept secret by teams management, and for

long time not even the aggregated wage bill was available to the public

ii) Professional teams have recognized the importance of counting with detailed scientific

analysis to make their decisions over when to buy or sell, how much to pay, and what

incentives schemes is better for sport’s success. At the same time, economists realized

that professional team sports offer a unique opportunity to do labor market research,

given the degree of detail in which information can be encountered (Frick, 2007).

iii) The unparalleled labor mobility experienced in such market, which exploded after the

verdict of the European Court of Justice in the case of Belgian player Jean-Marc Bosman.

Such veredict abolished the restriction established in some leagues about the number of

foreign-born players allowed to appear in a particular match (Frick, 2007).

Although the interest in studying football markets is relatively new, it has grown at exponen-

tial rate in last years, and now many scholars try to disentangle foundational aspects of this
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Table 6.1: Transfer expenses and revenues by league 2011-2012

Competition Expenditure (£ mills) Revenue (£ mills)

Premier League 562.77 370.55
Serie A 499.95 448.60
Primera División 330.59 277.13
Ligue 1 216.08 162.59
Premier Liga 198.29 60.90
Bundesliga 184.38 152.22

Source: www.transfermarket.co.uk

convulsive market, especially in the relation with transfers dynamics produced each summer in

Europe.

As an evidence of the relevance of such market, we present statistics by league on the amounts

traded, number of player transferred, and main teams movements. It will be seen that each year

there is great variance with respect to the amount of transfers and the time it where realized,

which is a clear reflect of the strategic behavior of managers, players and agents.

Using information from www.transfermarket.co.uk correspondent to the season 2011-2012, it

can be observed in table 1 that English Premier League and Italian Serie A are at the top of the

list with respect to expenditures and revenues (switching positions in each column), followed by

Spaniard Primera División, and French Ligue 1.

When disaggregating the information for club in table 2, the top 5 is composed by two English,

Chelsea F.C and Manchester City F.C.; one Italian, Juventus F.C, one French, Paris Saint

Germaine, and the not common player in the market, Nazi Makhachkala from Russia. The

performance of Paris Saint Germain and Manchester City F.C in the market, is a reflection on

how the clubs owned by Real Families of Qatar and United Emirates, are bumping the market

dramatically. The entering of these new actors (full of liquidity) has made team managers more

aggressive when making offers, but at the same time more strategic with respect to what deals

accept and at what time.

All these transactions were registered during either the summer or winter transfer window, which

are the previously authorized periods by UEFA (Union of European Football Associations) to

realize transfers among clubs. Even though a priori there are no particular restrictions that

differentiates both windows structurally, the majority of transactions are realized in the summer

window, due to the necessities of clubs for rearranging the lineups for the incoming season.

Additionally, it is worth to remark that summer window lasts for about three months, while
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Table 6.2: Top 5 deals, Clubs, 2011-2012

Competition Expenditure (£ mills)

Paris Saint Germain F.C. 93.50
Chelsea F.C. 90.00
Manchester City F.C. 83.50
Juventus F.C 81.50
Anzhi Makhachkala 74.00

Source: www.transfermarket.co.uk

winter windows last approximately one month. Moreover, there are strategic reasons that make

winter window less attractive (since it is at the middle of the season), like the fact that players

who have participated with one club in a current Champion or Europe League, are ineligible to

play for any other club in the same edition of the competition.

Now, the reasons for which a team can deem necessary go to the market can be very different,

but some can be regularly identified such as: qualification to the next Champions or Europe

League, retirement of some of its stars, or the announced intention of other mogul club to acquire

a key player (which in turn makes necessary go to the market to replace it). All these elements

make for managers the process of “buying” or “selling” a player a dynamic game of incomplete

information, as presented before.

Actually, in the realm of the model presented here, market windows can be identified with

summer market windows (to exclude the asymmetries commented above with respect to winter

transfer windows), and the “object” to be allocated is a player1 who is wanted by I potential

clubs. Given that clubs have different stochastic shocks during window’s duration (such as

injuries or leaves of some players), its entrance in the market is also stochastic, and can be

modeled through a counting process N in each window. As different clubs (potential buyers)

have different necessities, they value the abilities of the player in the market, differently, but

they learn such value when entering the summer market. All this elements are summarized in

valuation vi, for club i, which is assumed to be an independent draw from Fwk
.

The manager of the club who acts as a seller, have the option to place the player in other club

and accept the offer they made; or can hold the player for the next season. In such case, they

dismiss the opportunity to get the money from the deal, but retain the flow value of player

1Notice that player’s position is important in the determination of market value, since according to Frick
(2007), it is decreasing with the degree of specialization of the position, being goalkeeper the most specialized
position, and midfielder the more flexible. However, for the sake of contextualize the theoretical model, we can
assume ex ante homogeneous players, or we can restrict the attention just to the market of one specific position
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services to the team, collapsed in the term v0. Here, the discount rate over v0 reflects the fact

that as time goes by, the performance of the player is diminishing. Naturally, if the player is

not placed within the current window, then the manager has to wait until the opening of the

next window.

The seller can observe offer arrivals of any other club, as well as their valuation and the time up

to which they are willing to sustain their offers. However, no club can observe which of the rest

I − 1 competitors is bidding for the player, nor their valuations and reported departure times.

Given that scouting is a normal activity in football markets, managers often receive report about

parallel opportunities to get a similar-in-abilities player in not well known markets (Africa, Asia,

East Europe or Central America). Those opportunities are received as a signal once the club

has entered into the market2. When faced with that opportunity, the manager has to decide if

takes or dismisses it, under the awareness that if he takes it has to leave the summer window.

In football markets, it is sometimes customary that clubs manifests a deadline up to which they

are willing to hold their offers, given that clubs have to do pre-season training, and therefore

have to conform their teams as soon as possible. On the light of this fact, many times pre-

agreements are signed where the buying club commits to honor the terms signed, otherwise a

penalization fee can be collected by the seller. To capture this effect in the present model, a

constant penalization fee given by λ is assumed.

With all these elements defined, the manager of a club faces an optimal stopping-problem, as

defined in last chapter, whose solution satisfies the results presented above.

2Once explanation for this is that information flows more rapidly in Europe than in other emergent markets
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Chapter 7

Possible Extensions and Future

Research Agenda

The problem analyzed in this paper presents a degree of generality that makes very difficult to

address all the tangent questions that arise in one specific paper, yet some of the issues deserve

a thorough and deep analysis by themselves. Hence, the purpose of this chapter is to point out

some possible extensions and future research agenda the author considers worth to pursue.

Pricing options in dead times. Recall that inter window periods are considered dead times

at which no buyer can place a bid, nor can they buy call options over a future transaction in

the next summer market. Relaxing this assumption supposes the existence of financial markets

at which buyers can invest and borrow, as well a legal framework that enforces agents to fulfill

all compromises. Moreover, the price of the option would be a not so clear function of all the

measures that govern the history of the whole game in the institutionalized market.

Asymmetries in windows. As remarked in the application to European Football Transfer

Market, many times market windows are not symmetric, which entails further strategic consid-

erations for sellers and buyers. Those asymmetries go beyond the fact that windows’ length are

different, but can carry structural differences in valuations, budget restrictions, timing, incom-

patibilities in the use of the resource, among others. The example of placing a player in the

winter market, one he has participated in one of the continental competitions with other clubs,

is a real epitome of the strategic intricacies that incorporates the fact to have uneven market

windows.
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Dynamic budgets. One of the most challenging aspects of dynamic mechanism design is

the treatment of budget restrictions. As presented in the review of literature, Athey and Segal

(2007) review different theoretical aspects of having balanced budgets with respect to incentive

compatibility and efficiency. However, their environment is different from the presented here.

Again, inspired in the application of European Market Transfers, many times clubs are in the

market for selling and buying, and which event happens first, might affect the other one. Even

one a manager enter the market with the only intention to buy, if he happens to receive a good

offer for a player, then he could consider selling it and then recompose club’s payroll by buying

other available players. Clearly, the dynamic interactions it produces should be treated on a

more specific environment to maintain tractability. However, its relevance is evident, since on-

line markets permit to conduct many transactions in very short periods of time, and electronic

methods of payment make possible to use resources almost as soon as operations are realized.

Stochastic Dominance. Observe that in the present model the distribution that governs

the i.i.d draws of buyers’ valuations can vary along windows, even though the general support

of the random variable remains constant. One interesting case of this aspect is considering

stochastic dominance of some distribution types. Justification for this assumption can be easily

encountered in many environments where the object or entity to be allocated can learn over time

and therefore modify their intrinsic value. In our revision of the European Transfer Market, this

generalization serves the purpose to model the change in market-value players display, when get

more experienced and polish their innate abilities. Actually, many scouts incorporate youngsters

to the clubs under the expectation they develop their abilities in a stimulating environment

under the guidance and supervision of clubs’ coaches. Nonetheless, a natural adaptation time

is necessary for players to exploit their whole potential. Once they have passed this time of

learning, a time of stability and full productivity is coming, followed by a natural decline in

productivity as time goes by. In that sense, players’ productivity during their professional-

career can be depicted as a bell-shape curve, where the increasing part can be called “the learning

stage,” the stable portion of the curve at the maximum can be called “mature stage,” and the

decreasing part can be referred as “decreasing stage.” Hence, it is natural that clubs valuations

be higher over a player in his “mature stage” than in his “learning” or “decreasing” stage;

which can be modeled assuming that distributions (Fwk
) in market windows that correspond to
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the fist case, dominates stochastically those of the second case. Clearly in the introduction of

stochastic dominance, would make buyers’ and sellers more patient in the “learning stage,” and

consequently, more aggressive in the “decreasing stage.”

All these extensions demand, in some cases, strong modifications of the baseline model, which

entails at the same time a deeper exploration on the theory of optimal stopping problems and

measure theory. However, its relevance with respect to many online markets make them a worthy

endeavor.
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Chapter 8

Concluding Remarks

As mentioned before, mechanism design is a branch of theoretical economics that utilizes con-

cepts and inputs from game theory, information economics, dynamic programming, and some

key results from real and functional analysis, to analyze the way in which “desirable” social

goals can be implemented within democratic and strategic environments. Its origins goes back

to the seminal work of Hurwicz (1960, 1972), who set the foundational concepts over which

all the subsequent endeavors were established. He introduced the notion of social function and

how it can be implemented when agents act selfishly. Later on, in the 1970s and 1980s many

advances were made, using the new results coming from the discoveries on games with incom-

plete information introduced by Harsany (1967, 1968a, 1968b). Specifically, Myerson (1981) and

Maskin (1999) contributed to develop the keystone result called “The Revelation Principle,” that

permitted to qualify the attention to the class of direct mechanisms. At the same time, theo-

rists continued proving general results with respect to the solution concepts and implementation

techiques. The Maskin Monotonicity Theorem, the Graves-Clarke mechanisms for quasilinear

environments, and the D’aspermont-Varet result are only examples of how active the field has

been since then.

Once established as a solid field within economic theory, new challenges have arised as a con-

sequence of technologies advancements. Probably the most noticeable is the presence of online

markets, that permits to a very high number of sellers and buyers meet to trade with very

low transaction costs. The epitome of this phenomenon is perhaps the ubiquitous auction sites

in the world wide web. The reason of this fact is not arbitrary, since an auction is a better

mechanism than over-the counter markets where there is a great variance in the valuation over

the object sold, because it enables the seller to extract buyer’s surplus almost entirely. Such
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characteristic of auction is called in some literature a “discovery effect.” However, there is no

free lunch, and such discovery effect, generally comes at the price of higher transaction costs,

but with the advent of internet schemes these fees practically vanishes and then auctions have

become a very popular yet efficient way to trade any kind of commodities, from tickets for a

concert to houses and buildings.

As a consequence, much literature has burgeoned to treat with the theoretical issues of on-

line auctions, where anonymity offers sellers new tools to increase revenue. Nonetheless, online

auctions are not the only dynamic mechanism. Actually many examples can be encountered

in public tenders, mechanisms for selling airline tickets, reserving hotels’ rooms, and allocate

publicity spaces in television. New complexities of problems at hand has obligated the theory to

evolve and adopt sophisticated techniques from computer sciences to solve them with heuristic

algorithms. Many authors have worked in this applied branch since the explosion of such mech-

anism, while others have stated in the theoretical side to try to understand several of the new

intricacies this dynamic structure imposes over the behavior of agents.

As seen in the review of literature, many papers have developed the general setting of dynamic

mechanisms, with special attention to the issues of implementation under incentive compatibility

and incentive rationality, either under dominant strategy or Bayesian equilibrium concept. All

these endeavors in literature, either modeled in discrete or continuous time, consider complete

intervals of time and never analyzes time as a collection of truncated intervals, as it is the case

in real-life markets of public tenders, transfer markets of players, or bond auctions at many

treasuries or Central Banks. Moreover, another interesting characteristic is that many times

deadlines or departure times are not exogenous, and buyers have to decide optimally up to what

time they will be willing to stay at the mechanism.

This paper develops a dynamic mechanism with muti-dimmensional space type that allows

buyers report an optimal departure time when outside options are available in parallel markets,

and where the market is truncated in uniform intervals called as market windows. It extends

the work of Mierendorff (2010) who considers exogenous deadlines to analyze the conditions on

the relaxed solution is optimal; and the model of Pai and Vohra (2008), who allows complete

uncertainty on the side of the seller (i.e. aside of private valuations arrival and departure times

are also unknown) to study the implications over incentive compatibility and implementation

issues. The main result shows that under general conditions on the optimal stopping rule on

the side of the seller, there exists an optimal departure time that balances the trade-off faced

by buyers when external trading opportunities are available in parallel markets. Moreover, we
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demonstrate that if the the seller has the possibility to terminate the market unilaterally, it will

never do it in any dead time, but instead will wait to receive new information on the next market

window stream. Indeed, at any time t, the opitmal stopping rule always compares the expected

revenue starting the next window - conditioned in the history at which the mechanism has

arrived- with the potential revenue the seller can raise if allocates the object at such time. Such

dicothomy is resolved through a reservation property threshold that depends on the discount

rate and on the structure of the space of histories.

Notice that now incentive rationality and incentive compatibility have to take into account the

fact that collecting fines is another source of revenue, and hence that buyers internalize the

possibility to pay a fine in their revelation problem. However, since the optimal departure

time is a function of the private valuation, and thus the uncerainty of the types-space is one-

dimmensional, incentive compatibility conditions are an extension of Myerson static version,

which is proved.

Finally, implementation of the efficient allocation demands that seller aknowledges the possibility

of rent extraction through the collection of fines, versus the effect it produces on the incentive

rationality of buyers to participate in the mechanism. Further extension of the model requires

more anaylsis on this issue.
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